FranÃ\sois Forget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957678/publications.pdf

Version: 2024-02-01

171 14,470 65 115
papers citations h-index g-index

181 181 5408
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 1999, 104, 24155-24175.	3.3	955
2	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
3	Warming Early Mars with Carbon Dioxide Clouds That Scatter Infrared Radiation. Science, 1997, 278, 1273-1276.	12.6	416
4	Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 2006, 311, 368-371.	12.6	405
5	Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity. Science, 2002, 295, 110-113.	12.6	368
6	Eight-year climatology of dust optical depth on Mars. Icarus, 2015, 251, 65-95.	2.5	316
7	A climate database for Mars. Journal of Geophysical Research, 1999, 104, 24177-24194.	3.3	299
8	Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus, 2013, 222, 1-19.	2.5	275
9	Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	274
10	3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 2013, 222, 81-99.	2.5	259
11	Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature, 2013, 504, 268-271.	27.8	243
12	Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus, 2009, 203, 390-405.	2.5	240
13	GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE. Astrophysical Journal Letters, 2011, 733, L48.	8.3	205
14	3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. Astronomy and Astrophysics, 2013, 554, A69.	5.1	203
15	Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 2009, 114, .	3.3	200
16	Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature, 2004, 431, 1072-1075.	27.8	192
17	The habitability of Proxima Centauri b. Astronomy and Astrophysics, 2016, 596, A112.	5.1	191
18	Superrotation of Venus' atmosphere analyzed with a full general circulation model. Journal of Geophysical Research, 2010, 115, .	3.3	180

#	Article	IF	Citations
19	Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus, 2004, 170, 424-429.	2.5	177
20	Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research, 2004, 109, .	3.3	170
21	Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research E: Planets, 2014, 119, 1479-1495.	3.6	162
22	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
23	Comparison of "warm and wet―and "cold and icy―scenarios for early Mars in a 3â€D climate model. Journal of Geophysical Research E: Planets, 2015, 120, 1201-1219.	3.6	153
24	SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 2006, 111 , .	3.3	148
25	Tropical mountain glaciers on Mars: Altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus, 2008, 198, 305-317.	2.5	145
26	Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, $2011,116,.$	3.3	145
27	CO2Snowfall on Mars: Simulation with a General Circulation Model. Icarus, 1998, 131, 302-316.	2.5	141
28	Martian Year 34 Column Dust Climatology from Mars Climate Sounder Observations: Reconstructed Maps and Model Simulations. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006111.	3.6	137
29	Heterogeneous chemistry in the atmosphere of Mars. Nature, 2008, 454, 971-975.	27.8	130
30	Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astronomy and Astrophysics, 2018, 612, A86.	5.1	130
31	Infrared collision-induced and far-line absorption in dense CO2 atmospheres. Icarus, 2010, 210, 992-997.	2.5	128
32	Meteorological Variability and the Annual Surface Pressure Cycle on Mars. Journals of the Atmospheric Sciences, 1993, 50, 3625-3640.	1.7	126
33	The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: A comparison between numerical simulations and Viking observations. Journal of Geophysical Research, 1995, 100, 5501.	3.3	125
34	Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars. Science, 2011, 333, 1868-1871.	12.6	122
35	Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 2002, 107, 7-1-7-15.	3.3	121
36	Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport. Science, 2005, 307, 566-569.	12.6	119

#	Article	IF	Citations
37	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
38	Threeâ€dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research E: Planets, 2013, 118, 2105-2123.	3.6	118
39	Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 2020, 367, 297-300.	12.6	117
40	A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. Journal of Geophysical Research, 2009, 114 , .	3.3	116
41	The influence of radiatively active water ice clouds on the Martian climate. Geophysical Research Letters, 2012, 39, .	4.0	115
42	Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model. Journal of Geophysical Research, 2007, 112, .	3.3	112
43	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
44	A groundâ \in toâ \in exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	107
45	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
46	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	12.8	107
47	Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3â€D GCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,414.	3.3	106
48	Rocket dust storms and detached dust layers in the Martian atmosphere. Journal of Geophysical Research E: Planets, 2013, 118, 746-767.	3.6	98
49	Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astronomy and Astrophysics, 2010, 522, A22.	5.1	95
50	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	8.1	88
51	Recent advances in collisional effects on spectra of molecular gases and their practical consequences. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 178-227.	2.3	85
52	Early Mars climate near the Noachian–Hesperian boundary: Independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea Formation) and implications for valley network formation. Icarus, 2012, 219, 25-40.	2.5	84
53	The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits. Icarus, 2012, 219, 358-381.	2.5	82

#	Article	IF	Citations
55	Dunes on Pluto. Science, 2018, 360, 992-997.	12.6	81
56	Late Tharsis formation and implications for early Mars. Nature, 2016, 531, 344-347.	27.8	80
57	Testing evidence of recent hydration state change in sulfates on Mars. Journal of Geophysical Research, 2009, $114,\ldots$	3.3	78
58	Water ice at low to midlatitudes on Mars. Journal of Geophysical Research, 2010, 115, .	3.3	78
59	Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature, 2016, 540, 86-89.	27.8	78
60	Variability of the hydrogen in the martian upper atmosphere as simulated by a 3D atmosphere–exosphere coupling. Icarus, 2015, 245, 282-294.	2.5	77
61	Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophysical Research Letters, 2014, 41, 4873-4879.	4.0	75
62	Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus, 2010, 209, 452-469.	2.5	71
63	The Mars Dust Cycle. , 2017, , 295-337.		70
64	History and anatomy of subsurface ice on Mars. Icarus, 2012, 220, 1112-1120.	2.5	68
65	DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE. Astrophysical Journal, 2016, 826, 222.	4.5	68
66	Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nature Geoscience, 2020, 13, 199-204.	12.9	68
67	Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research E: Planets, 2015, 120, 2020-2035.	3.6	67
68	The effect of ground ice on the Martian seasonal CO2 cycle. Planetary and Space Science, 2008, 56, 251-255.	1.7	65
69	Upper atmosphere of Mars up to 120 km: Mars Global Surveyor accelerometer data analysis with the LMD general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	62
70	Seasonal variations of the martian COÂover Hellas as observed byÂOMEGA/Mars Express. Astronomy and Astrophysics, 2006, 459, 265-270.	5.1	62
71	A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research E: Planets, 2013, 118, 1468-1487.	3.6	61
72	A post-new horizons global climate model of Pluto including the N 2 , CH 4 and CO cycles. Icarus, 2017, 287, 54-71.	2.5	61

#	Article	IF	Citations
73	MAVEN/IUVS Stellar Occultation Measurements of Mars Atmospheric Structure and Composition. Journal of Geophysical Research E: Planets, 2018, 123, 1449-1483.	3.6	56
74	TheÂnitrogenÂcyclesÂonÂPlutoÂoverÂseasonalÂand astronomicalÂtimescales. Icarus, 2018, 309, 277-296.	2.5	54
75	Possible climates on terrestrial exoplanets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130084.	3.4	53
76	CO2 condensation is a serious limit to the deglaciation of Earth-like planets. Earth and Planetary Science Letters, 2017, 476, 11-21.	4.4	53
77	Diurnal Variations of Dust During the 2018 Global Dust Storm Observed by the Mars Climate Sounder. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006115.	3.6	52
78	TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0. Geoscientific Model Development, 2020, 13, 707-716.	3.6	52
79	Extensive MRO CRISM observations of 1.27 <i>$\hat{l}^{1}/4$</i> m O ₂ airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research, 2012, 117, .	3.3	51
80	Three-dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients. Journal of Geophysical Research E: Planets, 2014, 119, 1614-1636.	3.6	51
81	Pluto's haze as a surface material. Icarus, 2018, 314, 232-245.	2.5	50
82	Structure and dynamics of the convective boundary layer on Mars as inferred from largeâ€eddy simulations and remoteâ€sensing measurements. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 414-428.	2.7	49
83	A stringent upper limit to SO ₂ in the Martian atmosphere. Astronomy and Astrophysics, 2011, 530, A37.	5.1	49
84	The solsticial pause on Mars: 2 modelling and investigation of causes. Icarus, 2016, 264, 465-477.	2.5	48
85	The seasonal cycle of water vapour on Mars from assimilation of Thermal Emission Spectrometer data. Icarus, 2014, 237, 97-115.	2.5	47
86	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	2.5	47
87	Thermal infrared observations of the condensing Martian polar caps: CO2ice temperatures and radiative budget. Journal of Geophysical Research, 1996, 101, 16865-16879.	3.3	46
88	3D modeling of organic haze in Pluto's atmosphere. Icarus, 2017, 287, 72-86.	2.5	46
89	Global climate modeling of Saturn's atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 2014, 238, 110-124.	2.5	45
90	A warm or a cold early Earth? New insights from a 3-D climate-carbon model. Earth and Planetary Science Letters, 2017, 474, 97-109.	4.4	45

#	Article	IF	Citations
91	Mapping water ice clouds on Mars with MRO/MARCI. Icarus, 2019, 332, 24-49.	2.5	45
92	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€a‥ear of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	45
93	The impact of martian mesoscale winds on surface temperature and on the determination of thermal inertia. Icarus, 2011, 212, 504-519.	2.5	44
94	Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison. Astrophysical Journal, 2019, 875, 46.	4.5	44
95	A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus, 2009, 201, 504-516.	2.5	42
96	Aphelion waterâ€ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. Journal of Geophysical Research, 2012, 117, .	3.3	42
97	The martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling. lcarus, 2011, 216, 10-22.	2.5	41
98	Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model. Icarus, 2015, 261, 133-148.	2.5	41
99	On the origin of perennial water ice at the south pole of Mars: A precessionâ€controlled mechanism?. Journal of Geophysical Research, 2007, 112, .	3.3	40
100	Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method. Journal of Geophysical Research, 2007, 112 , .	3.3	38
101	The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus, 2019, 329, 148-165.	2.5	38
102	3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus, 2017, 288, 10-36.	2.5	37
103	Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: Glacial flow models using GCM-driven climate results and comparisons to geological observations. Icarus, 2011, 216, 23-39.	2.5	36
104	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
105	On the probability of habitable planets. International Journal of Astrobiology, 2013, 12, 177-185.	1.6	35
106	Comprehensive analysis of glaciated martian crater Greg. Icarus, 2014, 228, 96-120.	2.5	35
107	Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region. Space Science Reviews, 2021, 217, 20.	8.1	35
108	Unraveling the martian water cycle with high-resolution global climate simulations. Icarus, 2017, 291, 82-106.	2.5	34

#	Article	IF	Citations
109	Upper Neutral Atmosphere and Ionosphere. , 2017, , 433-463.		33
110	Snow precipitation on Mars driven by cloud-induced night-time convection. Nature Geoscience, 2017, 10, 652-657.	12.9	32
111	Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. Journal of Geophysical Research, 2007, 112, .	3.3	31
112	The Global Circulation. , 2017, , 229-294.		31
113	Far infrared measurements of absorptions by CH4 + CO2 and H2 + CO2 mixtures and implications for greenhouse warming on early Mars. Icarus, 2019, 321, 189-199.	2.5	31
114	Seasonal Variability of the Daytime and Nighttime Atmospheric Turbulence Experienced by InSight on Mars. Geophysical Research Letters, 2021, 48, e2021GL095453.	4.0	31
115	Numerical simulation of the winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter. Icarus, 2003, 164, 33-49.	2.5	30
116	The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus, 2020, 335, 113419.	2.5	30
117	Effects of a Large Dust Storm in the Nearâ€Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006493.	3.6	30
118	Is the Faint Young Sun Problem for Earth Solved?. Space Science Reviews, 2020, 216, 1.	8.1	30
119	The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter. Nature Geoscience, 2021, 14, 67-71.	12.9	30
120	TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report. Planetary Science Journal, 2021, 2, 106.	3.6	29
121	Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988–2016. Astronomy and Astrophysics, 2019, 625, A42.	5.1	29
122	The Emirates Mars Mission. Space Science Reviews, 2022, 218, 4.	8.1	29
123	Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere. Icarus, 2015, 246, 268-278.	2.5	28
124	Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation. Journal of Geophysical Research E: Planets, 2018, 123, 982-1000.	3.6	28
125	The Challenge of Atmospheric Data Assimilation on Mars. Earth and Space Science, 2017, 4, 690-722.	2.6	27
126	Solar Tides in the Middle and Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028140.	2.4	27

#	Article	IF	Citations
127	Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation. Geophysical Research Letters, 2014, 41, 6620-6626.	4.0	26
128	Thermal and wind structure of the Martian thermosphere as given by two General Circulation Models. Planetary and Space Science, 2010, 58, 1832-1849.	1.7	24
129	Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus, 2014, 241, 269-279.	2.5	24
130	Mars Clouds. , 2017, , 76-105.		24
131	The Water Cycle., 2017,, 338-373.		24
132	Impact of Gravity Waves on the Middle Atmosphere of Mars: A Nonâ€Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2018JE005873.	3.6	23
133	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	8.1	23
134	Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006859.	3.6	22
135	The effect of atmospheric pressure on the dispersal of pyroclasts from martian volcanoes. Icarus, 2013, 223, 149-156.	2.5	21
136	Orographic precipitation in valley network headwaters: Constraints on the ancient Martian atmosphere. Geophysical Research Letters, 2013, 40, 4182-4187.	4.0	20
137	Modeling Windâ€Driven Ionospheric Dynamo Currents at Mars: Expectations for InSight Magnetic Field Measurements. Geophysical Research Letters, 2019, 46, 5083-5091.	4.0	20
138	Relationship Between the Ozone and Water Vapor Columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006838.	3.6	19
139	The paradoxes of the Late Hesperian Mars ocean. Scientific Reports, 2019, 9, 5717.	3.3	18
140	Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy and Astrophysics, 2021, 647, A161.	5.1	17
141	Mars's Twilight Cloud Band: A New Cloud Feature Seen During the Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084997.	4.0	16
142	A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics, 0, , .	5.1	16
143	Pluto's Beating Heart Regulates the Atmospheric Circulation: Results From Highâ€Resolution and Multiyear Numerical Climate Simulations. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006120.	3.6	16
144	Constraining physics of very hot super-Earths with the <i>James Webb</i> Telescope. The case of CoRot-7b. Astronomy and Astrophysics, 2014, 563, A103.	5.1	16

#	Article	IF	Citations
145	The Origin of Observed Magnetic Variability for a Sol on Mars From InSight. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006505.	3.6	15
146	Imaging of Martian Circulation Patterns and Atmospheric Tides Through MAVEN/IUVS Nightglow Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027318.	2.4	13
147	Near Surface Properties of Martian Regolith Derived From InSight HP ³ â€RAD Temperature Observations During Phobos Transits. Geophysical Research Letters, 2021, 48, e2021GL093542.	4.0	13
148	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	4.4	13
149	Equatorial mountains on Pluto are covered by methane frosts resulting from a unique atmospheric process. Nature Communications, 2020, 11, 5056.	12.8	12
150	The Effect of the Martian 2018 Global Dust Storm on HDO as Predicted by a Mars Global Climate Model. Geophysical Research Letters, 2021, 48, e2020GL090962.	4.0	12
151	InSight Pressure Data Recalibration, and Its Application to the Study of Longâ€∓erm Pressure Changes on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
152	Regional stratigraphy of the south polar layered deposits (Promethei Lingula, Mars): "Discontinuity-bounded―units in images and radargrams. Icarus, 2018, 308, 76-107.	2.5	11
153	A Seasonally Recurrent Annular Cyclone in Mars Northern Latitudes and Observations of a Companion Vortex. Journal of Geophysical Research E: Planets, 2018, 123, 3020-3034.	3.6	11
154	Global seasonal variations of the near-surface relative humidity levels on present-day Mars. Icarus, 2019, 333, 481-495.	2.5	11
155	Thermal Tides in the Martian Atmosphere Near Northern Summer Solstice Observed by ACS/TIRVIM Onboard TGO. Geophysical Research Letters, 2022, 49, .	4.0	10
156	Habitable Zone around other Stars. Earth, Moon and Planets, 1998, 81, 59-72.	0.6	9
157	The Early Mars Climate System. , 2017, , 526-568.		9
158	Thermal Structure and Aerosols in Mars' Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	9
159	Recent Climate Variations. , 2017, , 497-525.		8
160	Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations. Astronomy and Astrophysics, 2022, 659, A136.	5.1	8
161	Volatile transport modeling on Triton with new observational constraints. Icarus, 2022, 373, 114764.	2.5	7
162	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6

#	Article	IF	Citations
163	The Wave Origins of Longitudinal Structures in ExoMars Trace Gas Orbiter (TGO) Aerobraking Densities. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028769.	2.4	5
164	Improved Modeling of Mars' HDO Cycle Using a Mars' Global Climate Model. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
165	Stratigraphic and Isotopic Evolution of the Martian Polar Caps From Paleoâ€Climate Models. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
166	Water and Climates on Mars., 2007, , 103-122.		2
167	No detection of SO ₂ , H ₂ S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astronomy and Astrophysics, 2022, 658, A86.	5.1	1
168	Cryogenic origin of fractionation between perchlorate and chloride under modern martian climate. Communications Earth & Environment, 2022, 3, .	6.8	1
169	Global climate model occultation lightcurves tested by August 2018 ground-based stellar occultation. Icarus, 2021, 356, 113976.	2.5	0
170	CO2 Ice Clouds (Mars)., 2014,, 1-1.		0
171	CO2 Ice Clouds (Mars). , 2015, , 489-490.		0