Jeong Rae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957323/publications.pdf

Version: 2024-02-01

394421 361022 1,266 41 19 35 citations g-index h-index papers 42 42 42 1879 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cooperative Activation of PI3K by Ras and Rho Family Small GTPases. Molecular Cell, 2012, 47, 281-290.	9.7	146
2	Coupled Feedback Loops Form Dynamic Motifs of Cellular Networks. Biophysical Journal, 2008, 94, 359-365.	0.5	120
3	Reverse engineering of gene regulatory networks. IET Systems Biology, 2007, 1, 149-163.	1.5	100
4	The biphasic behavior of incoherent feedâ€forward loops in biomolecular regulatory networks. BioEssays, 2008, 30, 1204-1211.	2.5	93
5	Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. BioEssays, 2007, 29, 85-90.	2.5	72
6	The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises. Computational Biology and Chemistry, 2006, 30, 438-444.	2.3	65
7	Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis. Cellular Signalling, 2014, 26, 2446-2459.	3.6	56
8	Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4691-4696.	7.1	56
9	A design principle underlying the synchronization of oscillations in cellular systems. Journal of Cell Science, 2010, 123, 537-543.	2.0	55
10	Reduction of Complex Signaling Networks to a Representative Kernel. Science Signaling, 2011, 4, ra35.	3.6	54
11	Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics, 2009, 25, 1898-1904.	4.1	48
12	A hidden incoherent switch regulates RCAN1 in the calcineurin–NFAT signaling network. Journal of Cell Science, 2011, 124, 82-90.	2.0	45
13	Switching feedback mechanisms realize the dual role of MCIP in the regulation of calcineurin activity. FEBS Letters, 2006, 580, 5965-5973.	2.8	34
14	Biphasic RLR–IFN-β Response Controls the Balance between Antiviral Immunity and Cell Damage. Journal of Immunology, 2013, 190, 1192-1200.	0.8	27
15	The co-regulation mechanism of transcription factors in the human gene regulatory network. Nucleic Acids Research, 2012, 40, 8849-8861.	14.5	26
16	The reverse control of irreversible biological processes. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 366-377.	6.6	26
17	Robustness and Evolvability of the Human Signaling Network. PLoS Computational Biology, 2014, 10, e1003763.	3.2	23
18	Network Inference Analysis Identifies SETDB1 as a Key Regulator for Reverting Colorectal Cancer Cells into Differentiated Normal-Like Cells. Molecular Cancer Research, 2020, 18, 118-129.	3.4	23

#	Article	IF	Citations
19	Red Chinese Cabbage Transcriptome Analysis Reveals Structural Genes and Multiple Transcription Factors Regulating Reddish Purple Color. International Journal of Molecular Sciences, 2020, 21, 2901.	4.1	21
20	Multiple roles of the NF�B signaling pathway regulated by coupled negative feedback circuits. FASEB Journal, 2009, 23, 2796-2802.	0.5	20
21	Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster. BMC Systems Biology, 2012, 6, 31.	3.0	20
22	The core regulation module of stress-responsive regulatory networks in yeast. Nucleic Acids Research, 2012, 40, 8793-8802.	14.5	18
23	Dynamic network rewiring determines temporal regulatory functions in <i>Drosophila /i > <i>melanogaster /i > development processes. BioEssays, 2010, 32, 505-513.</i></i>	2.5	16
24	Evolutionary design principles of modules that control cellular differentiation: consequences for hysteresis and multistationarity. Bioinformatics, 2008, 24, 1516-1522.	4.1	13
25	Pja2 Inhibits Wnt/ \hat{l}^2 -catenin Signaling by Reducing the Level of TCF/LEF1. International Journal of Stem Cells, 2018, 11, 242-247.	1.8	12
26	Inferring biomolecular regulatory networks from phase portraits of time-series expression profiles. FEBS Letters, 2006, 580, 3511-3518.	2.8	10
27	A system-level investigation into the cellular toxic response mechanism mediated by AhR signal transduction pathway. Bioinformatics, 2010, 26, 2169-2175.	4.1	10
28	Stage-Dependent Gene Expression Profiling in Colorectal Cancer. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1685-1692.	3.0	7
29	Topological Difference of Core Regulatory Networks Induces Different Entrainment Characteristics of Plant and Animal Circadian Clocks. Biophysical Journal, 2007, 93, L01-L03.	0.5	6
30	Why have serine/threonine/tyrosine kinases been evolutionarily selected in eukaryotic signaling cascades?. Computational Biology and Chemistry, 2008, 32, 218-221.	2.3	6
31	The regulatory circuits for hysteretic switching in cellular signal transduction pathways. FEBS Journal, 2012, 279, 3329-3337.	4.7	6
32	Integrative systems analysis of diet-induced obesity identified a critical transition in the transcriptomes of the murine liver and epididymal white adipose tissue. International Journal of Obesity, 2016, 40, 338-345.	3.4	6
33	Comprehensive analysis of CCCH zinc-finger-type transcription factors in the Brassica rapa genome. Horticulture Environment and Biotechnology, 2018, 59, 729-747.	2.1	6
34	Analyses of the TCR repertoire of MHC class II-restricted innate CD4+ T cells. Experimental and Molecular Medicine, 2015, 47, e154-e154.	7.7	5
35	The core regulatory network in human cells. Biochemical and Biophysical Research Communications, 2017, 484, 348-353.	2.1	4
36	Identification and characterization of the leaf specific networks of inner and rosette leaves in Brassica rapa. Biochemical and Biophysical Research Communications, 2017, 490, 821-826.	2.1	4

#	Article	IF	CITATIONS
37	An IBNR–RBNS insurance risk model with marked Poisson arrivals. Insurance: Mathematics and Economics, 2018, 79, 26-42.	1.2	3
38	Identification of Gene Networks with Time Delayed Regulation Based on Temporal Expression Profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1161-1168.	3.0	2
39	Dynamics of the gene regulatory networks of the inner and rosette leaves in Brassica rapa. Horticulture Environment and Biotechnology, 2020, 61, 317-326.	2.1	1
40	Characterization of the Alzheimer's disease-related network based on the dynamic network approach. Journal of Korean Institute of Intelligent Systems, 2015, 25, 529-535.	0.1	1
41	Cover Image, Volume 8, Issue 5. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, i-i.	6.6	0