Catherine L Lawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The three-dimensional structure of trp repressor. Nature, 1985, 317, 782-786.	27.8	386
2	Critical assessment of methods of protein structure prediction (CASP)—Round XII. Proteins: Structure, Function and Bioinformatics, 2018, 86, 7-15.	2.6	296
3	Catabolite activator protein: DNA binding and transcription activation. Current Opinion in Structural Biology, 2004, 14, 10-20.	5.7	291
4	EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Research, 2011, 39, D456-D464.	14.5	246
5	Structural Basis of Transcription Activation: The CAP-alpha CTD-DNA Complex. Science, 2002, 297, 1562-1566.	12.6	234
6	EMDataBank unified data resource for 3DEM. Nucleic Acids Research, 2016, 44, D396-D403.	14.5	230
7	Nucleotide Sequence and X-ray Structure of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 in a Maltose-dependent Crystal Form. Journal of Molecular Biology, 1994, 236, 590-600.	4.2	228
8	Validation of Structures in the Protein Data Bank. Structure, 2017, 25, 1916-1927.	3.3	210
9	Tandem binding in crystals of a trp represser/operator half-site complex. Nature, 1993, 366, 178-182.	27.8	163
10	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	3.3	159
11	Site-Directed Mutations in Tyrosine 195 of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 Affect Activity and Product Specificity. Biochemistry, 1995, 34, 3368-3376.	2.5	146
12	Flexibility of the DNA-binding domains oftrp repressor. Proteins: Structure, Function and Bioinformatics, 1988, 3, 18-31.	2.6	142
13	Remediation of the protein data bank archive. Nucleic Acids Research, 2007, 36, D426-D433.	14.5	136
14	OneDep: Unified wwPDB System for Deposition, Biocuration, and Validation of Macromolecular Structures in the PDB Archive. Structure, 2017, 25, 536-545.	3.3	130
15	Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. Journal of Molecular Biology, 1999, 286, 83-93.	4.2	107
16	CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins: Structure, Function and Bioinformatics, 2014, 82, 7-13.	2.6	91
17	Evaluation of model quality predictions in CASP9. Proteins: Structure, Function and Bioinformatics, 2011, 79, 91-106.	2.6	83
18	Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19830-19835.	7.1	76

#	Article	IF	CITATIONS
19	Trendspotting in the Protein Data Bank. FEBS Letters, 2013, 587, 1036-1045.	2.8	74
20	Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nature Methods, 2021, 18, 156-164.	19.0	73
21	Methods of model accuracy estimation can help selecting the best models from decoy sets: Assessment of model accuracy estimations in <scp>CASP</scp> 11. Proteins: Structure, Function and Bioinformatics, 2016, 84, 349-369.	2.6	63
22	Assessment of model accuracy estimations in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 345-360.	2.6	61
23	Structural identification of a key protective B-cell epitope in lyme disease antigen OspA 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 302, 1153-1164.	4.2	59
24	The structure of trp pseudorepressor at 1.65Ã shows why indole propionate acts as a trp 'inducer'. Nature, 1988, 333, 869-871.	27.8	55
25	Assessment of protein assembly prediction in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 247-256.	2.6	54
26	Structural Conservation of Neurotropism-associated VspA within the Variable Borrelia Vsp-OspC Lipoprotein Family. Journal of Biological Chemistry, 2001, 276, 457-463.	3.4	49
27	Data management challenges in three-dimensional EM. Nature Structural and Molecular Biology, 2012, 19, 1203-1207.	8.2	49
28	A 3D cellular context for the macromolecular world. Nature Structural and Molecular Biology, 2014, 21, 841-845.	8.2	47
29	Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	45
30	Indirect Readout of DNA Sequence at the Primary-kink Site in the CAP–DNA Complex: Recognition of Pyrimidine-Purine and Purine-Purine Steps. Journal of Molecular Biology, 2006, 357, 173-183.	4.2	43
31	<scp>CASP</scp> 11 statistics and the prediction center evaluation system. Proteins: Structure, Function and Bioinformatics, 2016, 84, 15-19.	2.6	42
32	Signatures of Protein-DNA Recognition in Free DNA Binding Sites. Journal of Molecular Biology, 2009, 386, 1054-1065.	4.2	40
33	PDBx/mmCIF Ecosystem: Foundational Semantic Tools for Structural Biology. Journal of Molecular Biology, 2022, 434, 167599.	4.2	39
34	Representation of viruses in the remediated PDB archive. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 874-882.	2.5	35
35	Structural Investigation of Borrelia burgdorferi OspB, a BactericidalFab Target. Journal of Biological Chemistry, 2005, 280, 17363-17370.	3.4	30
36	Design of a data model for developing laboratory information management and analysis systems for protein production. Proteins: Structure, Function and Bioinformatics, 2004, 58, 278-284.	2.6	27

CATHERINE L LAWSON

#	Article	IF	CITATIONS
37	Databases and Archiving for CryoEM. Methods in Enzymology, 2016, 579, 393-412.	1.0	27
38	Residual Brain Infection in Relapsingâ€Fever Borreliosis. Journal of Infectious Diseases, 2006, 193, 1451-1458.	4.0	26
39	Evolving data standards for cryo-EM structures. Structural Dynamics, 2020, 7, 014701.	2.3	26
40	Approaches toward the Directed Design of a Vaccine againstBorrelia burgdorferi. Journal of Infectious Diseases, 2002, 185, S46-S51.	4.0	22
41	The 2010 cryoâ€em modeling challenge. Biopolymers, 2012, 97, 651-654.	2.4	22
42	New system for archiving integrative structures. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1486-1496.	2.3	22
43	Cryoâ€electron microscopy targets in CASP13: Overview and evaluation of results. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1128-1140.	2.6	21
44	The tryptophan repressor sequence is highly conserved among theEnterobacteriaceae. Nucleic Acids Research, 1994, 22, 1821-1829.	14.5	19
45	Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (Vsp1) of Borrelia turicatae. Journal of Bacteriology, 2006, 188, 4522-4530.	2.2	19
46	Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB. Journal of Biological Chemistry, 2021, 296, 100560.	3.4	18
47	Maltodextrin-dependent crystallization of cyclomaltodextrin glucanotransferase from Bacillus circulans. Journal of Molecular Biology, 1990, 214, 807-809.	4.2	17
48	Crystallization and Preliminary X-Ray Analysis of Borrelia burgdorferi Outer Surface Protein A (OspA) Complexed with a Murine Monoclonal Antibody Fab Fragment. Journal of Structural Biology, 1995, 115, 335-337.	2.8	16
49	The data universe of structural biology. IUCrJ, 2020, 7, 630-638.	2.2	16
50	Biophysical characterization of natural and mutant fluorescent proteins cloned from zooxanthellate corals. FEBS Letters, 2004, 570, 175-183.	2.8	15
51	Structure-Function Investigation of Vsp Serotypes of the Spirochete Borrelia hermsii. PLoS ONE, 2009, 4, e7597.	2.5	15
52	Use of electron microscopy in the examination of lattice defects in crystals of alcohol oxidase. FEBS Letters, 1989, 244, 213-216.	2.8	14
53	E. coli trp Repressor Forms a Domain-Swapped Array in Aqueous Alcohol. Structure, 2004, 12, 1099-1108.	3.3	13
54	The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element. Biochemistry, 2020, 59, 4523-4532.	2.5	12

CATHERINE L LAWSON

#	Article	IF	CITATIONS
55	Chapter 4. Indirect Readout of DNA Sequence by Proteins. RSC Biomolecular Sciences, 2008, , 66-90.	0.4	12
56	Cocrystals of Escherichia coli trp Repressor Bound to an Alternative Operator DNA Sequence. Journal of Molecular Biology, 1993, 234, 496-498.	4.2	11
57	Evaluation system and web infrastructure for the second cryo-EM model challenge. Journal of Structural Biology, 2018, 204, 96-108.	2.8	11
58	<scp>Cryoâ€EM</scp> targets in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1949-1958.	2.6	11
59	Structure of the <i>Escherichia coli</i> RNA polymerase α subunit C-terminal domain. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 806-812.	2.5	10
60	An atomic view of the L-tryptophan binding site of trp repressor. Nature Structural Biology, 1996, 3, 986-987.	9.7	8
61	Unified Data Resource for Cryo-EM. Methods in Enzymology, 2010, 483, 73-90.	1.0	7
62	Crystals oftrprepressor suitable for high-resolution neutron Laue diffraction studies. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 136-138.	2.5	6
63	Anticipating innovations in structural biology. Quarterly Reviews of Biophysics, 2018, 51, e8.	5.7	6
64	Distribution of evaluation scores for the models submitted to the second cryo-EM model challenge. Data in Brief, 2018, 20, 1629-1638.	1.0	5
65	Structure of catabolite activator protein with cobalt(II) and sulfate. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 560-563.	0.8	4
66	Environmentâ€dependent longâ€range structural distortion in a temperatureâ€sensitive point mutant. Protein Science, 2012, 21, 63-74.	7.6	2
67	A structure-based method for identifying DNA-binding proteins and their sites of DNA-interaction. Journal of Structural and Functional Genomics, 2004, 5, 255-265.	1.2	1
68	Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallographica Section D: Structural Biology, 2021, 77, 471-485.	2.3	1
69	Crystal structures of Val58lle tryptophan repressor in a domain-swapped array in the presence and absence of <scp>L</scp> -tryptophan. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 215-225.	0.8	0
70	New online curriculum: the PDB pipeline and data archiving. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a243-a243.	0.1	0