Ji Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956852/publications.pdf

Version: 2024-02-01

		623734	552781
29	1,089	14	26
papers	citations	h-index	g-index
			1000
29	29	29	1830
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018, 126, 360-371.	10.3	367
2	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	39 . 5	121
3	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	5.8	79
4	Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride–Carbon Nanotube Heterostructures. ACS Nano, 2021, 15, 7608-7617.	14.6	69
5	Conductivity Tuning via Doping with Electron Donating and Withdrawing Molecules in Perovskite CsPbI ₃ Nanocrystal Films. Advanced Materials, 2019, 31, e1902250.	21.0	66
6	Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nature Photonics, 2014, 8, 239-243.	31.4	61
7	The Structural Origin of Chiroptical Properties in Perovskite Nanocrystals with Chiral Organic Ligands. Advanced Functional Materials, 2022, 32, .	14.9	43
8	Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances, 2021, 7, .	10.3	41
9	Scalable Transfer of Suspended Two-Dimensional Single Crystals. Nano Letters, 2015, 15, 5089-5097.	9.1	38
10	3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions. Nano Letters, 2015, 15, 5919-5925.	9.1	33
11	Directly embedded Ni ₃ S ₂ /Co ₉ S ₈ @S-doped carbon nanofiber networks as a free-standing anode for lithium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 166-174.	4.9	19
12	Electrically controlled metal–insulator transition process in VO2thin films. Journal of Physics Condensed Matter, 2012, 24, 035601.	1.8	18
13	Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks. Nanoscale, 2019, 11, 21196-21206.	5.6	17
14	Physisorbed versus chemisorbed oxygen effect on thermoelectric properties of highly organized single walled carbon nanotube nanofilms. RSC Advances, 2017, 7, 14078-14087.	3.6	16
15	Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface. Scientific Reports, 2015, 5, 15908.	3.3	15
16	Sono-Assisted Surface Energy Driven Assembly of 2D Materials on Flexible Polymer Substrates: A Green Assembly Method Using Water. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33458-33464.	8.0	15
17	Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs. ACS Applied Materials & Interfaces, 2016, 8, 34061-34067.	8.0	13
18	Ultrafast structural evolution and formation of linear carbon chains in single-walled carbon nanotube networks by femtosecond laser irradiation. Nanoscale, 2017, 9, 16627-16631.	5.6	10

#	Article	IF	CITATIONS
19	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	12.8	10
20	High-performance carbon nanotube electronic ratchets. Energy and Environmental Science, 2021, 14, 5457-5468.	30.8	8
21	Extracellular electron transfer across bio-nano interfaces for CO ₂ electroreduction. Nanoscale, 2021, 13, 1093-1102.	5 . 6	8
22	Pyroelectricity of Lead Sulfide (PbS) Quantum Dot Films Induced by Janus-Ligand Shells. ACS Nano, 2021, 15, 14965-14971.	14.6	8
23	Perovskite Electronic Ratchets for Energy Harvesting. Advanced Electronic Materials, 2020, 6, 2000831.	5.1	7
24	Vaporâ€Phaseâ€Gatingâ€Induced Ultrasensitive Ion Detection in Graphene and Singleâ€Walled Carbon Nanotube Networks. Advanced Materials, 2017, 29, 1606883.	21.0	3
25	Mechanical characterization of suspended strips of meshed single-walled carbon nanotubes. Journal of Applied Physics, 2016, 119, 045305.	2.5	2
26	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2070065.	5.8	2
27	(Invited) Organic/Inorganic Hybrid Interfaces between Perovskite Semiconductors and Semiconducting SWCNTs. ECS Meeting Abstracts, 2021, MA2021-01, 589-589.	0.0	0
28	Controlling Doping Profiles in Enriched Semiconducting Carbon Nanotube Networks for Novel Energy Harvesting Electronic Devices. ECS Meeting Abstracts, 2019, , .	0.0	0
29	(Invited) Organic/Inorganic Hybrid Interfaces between Perovskite Semiconductors and Semiconducting Swcnts for Energy Harvesting and Conversion. ECS Meeting Abstracts, 2020, MA2020-01, 693-693.	0.0	0