
Scott A Bradford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel analytical expressions for determining van der Waals interaction between a particle and air–water interface: Unexpected stronger van der Waals force than capillary force. Journal of Colloid and Interface Science, 2022, 610, 982-993.	9.4	6
2	Significance of Non-DLVO Interactions on the Co-Transport of Functionalized Multiwalled Carbon Nanotubes and Soil Nanoparticles in Porous Media. Environmental Science & Technology, 2022, 56, 10668-10680.	10.0	10
3	Micro- and nanoplastics retention in porous media exhibits different dependence on grain surface roughness and clay coating with particle size. Water Research, 2022, 221, 118717.	11.3	15
4	Comparison of recharge from drywells and infiltration basins: A modeling study. Journal of Hydrology, 2021, 594, 125720.	5.4	8
5	Colloid Interaction Energies for Surfaces with Steric Effects and Incompressible and/or Compressible Roughness. Langmuir, 2021, 37, 1501-1510.	3.5	20
6	Impact of phosphate adsorption on the mobility of PANIâ€supported nano zeroâ€valent iron. Vadose Zone Journal, 2021, 20, e20091.	2.2	7
7	Why Are Viruses Spiked?. MSphere, 2021, 6, .	2.9	5
8	Non-monotonic contribution of nonionic surfactant on the retention of functionalized multi-walled carbon nanotubes in porous media. Journal of Hazardous Materials, 2021, 407, 124874.	12.4	6
9	Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport. Environmental Pollution, 2021, 276, 116661.	7.5	18
10	Virus transport from drywells under constant head conditions: AÂmodeling study. Water Research, 2021, 197, 117040.	11.3	7
11	Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media. Environmental Pollution, 2020, 258, 113803.	7.5	29
12	Synergies of surface roughness and hydration on colloid detachment in saturated porous media: Column and atomic force microscopy studies. Water Research, 2020, 183, 116068.	11.3	21
13	Shape and orientation of bare silica particles influence their deposition under intermediate ionic strength: A study with QCM–D and DLVO theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124921.	4.7	26
14	Particle–bubble interaction energies for particles with physical and chemical heterogeneities. Minerals Engineering, 2020, 155, 106472.	4.3	32
15	Release of colloidal biochar during transient chemical conditions: The humic acid effect. Environmental Pollution, 2020, 260, 114068.	7.5	11
16	Groundwater recharge from drywells under constant head conditions. Journal of Hydrology, 2020, 583, 124569.	5.4	19
17	Interaction energies for hollow and solid cylinders: Role of aspect ratio and particle orientation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123781.	4.7	20
18	Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. Environmental Pollution, 2019, 255, 113124.	7.5	15

SCOTT A BRADFORD

#	Article	IF	CITATIONS
19	Nanobubble Retention in Saturated Porous Media under Repulsive van der Waals and Electrostatic Conditions. Langmuir, 2019, 35, 6853-6860.	3.5	15
20	Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins. Environmental Pollution, 2019, 246, 855-863.	7.5	55
21	Drywell infiltration and hydraulic properties in heterogeneous soil profiles. Journal of Hydrology, 2019, 570, 598-611.	5.4	27
22	Mechanisms of graphene oxide aggregation, retention, and release in quartz sand. Science of the Total Environment, 2019, 656, 70-79.	8.0	30
23	Co-transport of multi-walled carbon nanotubes and sodium dodecylbenzenesulfonate in chemically heterogeneous porous media. Environmental Pollution, 2019, 247, 907-916.	7.5	28
24	Evaluating drywells for stormwater management and enhanced aquifer recharge. Advances in Water Resources, 2018, 116, 167-177.	3.8	31
25	Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material. Environmental Pollution, 2018, 236, 195-207.	7.5	23
26	Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Frontiers in Microbiology, 2018, 9, 2122.	3.5	23
27	Minimizing Virus Transport in Porous Media by Optimizing Solid Phase Inactivation. Journal of Environmental Quality, 2018, 47, 1058-1067.	2.0	9
28	DLVO Interaction Energies for Hollow Particles: The Filling Matters. Langmuir, 2018, 34, 12764-12775.	3.5	9
29	Analysis of stability behavior of carbon black nanoparticles in ecotoxicological media: Hydrophobic and steric effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 306-316.	4.7	38
30	Comparison of Types and Amounts of Nanoscale Heterogeneity on Bacteria Retention. Frontiers in Environmental Science, 2018, 6, .	3.3	32
31	Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength?. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	53
32	Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media. Science of the Total Environment, 2017, 603-604, 406-415.	8.0	19
33	Critical Role of Preferential Flow in Field cale Pathogen Transport and Retention. Vadose Zone Journal, 2017, 16, 1-13.	2.2	12
34	Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil. Water Research, 2017, 109, 358-366.	11.3	49
35	Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils. Environmental Pollution, 2017, 221, 470-479.	7.5	31
36	Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site. Journal of Hydrology, 2017, 555, 724-735.	5.4	21

SCOTT A BRADFORD

#	Article	IF	CITATIONS
37	DLVO Interaction Energies between Hollow Spherical Particles and Collector Surfaces. Langmuir, 2017, 33, 10455-10467.	3.5	21
38	Contributions of Nanoscale Roughness to Anomalous Colloid Retention and Stability Behavior. Langmuir, 2017, 33, 10094-10105.	3.5	94
39	Do Goethite Surfaces Really Control the Transport and Retention of Multi-Walled Carbon Nanotubes in Chemically Heterogeneous Porous Media?. Environmental Science & Technology, 2016, 50, 12713-12721.	10.0	47
40	Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. Water Research, 2016, 90, 247-257.	11.3	72
41	Critical role of surface roughness on colloid retention and release in porous media. Water Research, 2016, 88, 274-284.	11.3	141
42	Equilibrium and kinetic models for colloid release under transient solution chemistry conditions. Journal of Contaminant Hydrology, 2015, 181, 141-152.	3.3	53
43	Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media. Langmuir, 2015, 31, 12096-12105.	3.5	85
44	Release of Quantum Dot Nanoparticles in Porous Media: Role of Cation Exchange and Aging Time. Environmental Science & Technology, 2013, 47, 11528-11536.	10.0	65
45	A Theoretical Analysis of Colloid Attachment and Straining in Chemically Heterogeneous Porous Media. Langmuir, 2013, 29, 6944-6952.	3.5	138
46	Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media. Langmuir, 2013, 29, 3668-3676.	3.5	129
47	Transport and Fate of Microbial Pathogens in Agricultural Settings. Critical Reviews in Environmental Science and Technology, 2013, 43, 775-893.	12.8	197
48	Modeling colloid and microorganism transport and release with transients in solution ionic strength. Water Resources Research, 2012, 48, .	4.2	73
49	Colloid Adhesive Parameters for Chemically Heterogeneous Porous Media. Langmuir, 2012, 28, 13643-13651.	3.5	69
50	Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. Journal of Contaminant Hydrology, 2012, 136-137, 86-95.	3.3	70
51	Pore cale Simulations to Determine the Applied Hydrodynamic Torque and Colloid Immobilization. Vadose Zone Journal, 2011, 10, 252-261.	2.2	81
52	Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media. Water Research, 2010, 44, 1213-1223.	11.3	52
53	<i>Escherichia coli</i> O157:H7 Transport in Saturated Porous Media: Role of Solution Chemistry and Surface Macromolecules. Environmental Science & amp; Technology, 2009, 43, 4340-4347.	10.0	147
54	Coupled Factors Influencing Concentration-Dependent Colloid Transport and Retention in Saturated Porous Media. Environmental Science & Technology, 2009, 43, 6996-7002.	10.0	140

SCOTT A BRADFORD

#	Article	IF	CITATIONS
55	Reply to comment by William P. Johnson et al. on "Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry― Water Resources Research, 2009, 45, .	4.2	8
56	Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Water Resources Research, 2008, 44, .	4.2	205
57	Colloid Transport and Retention in Unsaturated Porous Media: A Review of Interfaceâ€, Collectorâ€, and Poreâ€Scale Processes and Models. Vadose Zone Journal, 2008, 7, 667-681.	2.2	286
58	Resolving the Coupled Effects of Hydrodynamics and DLVO Forces on Colloid Attachment in Porous Media. Langmuir, 2007, 23, 9652-9660.	3.5	236
59	Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 2002, 38, 63-1-63-12.	4.2	599