
Diego M Marzese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3955886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ASO Author Reflections: Establishing Novel Molecular Subtypes of Appendiceal Cancer. Annals of Surgical Oncology, 2022, 29, 2126-2127.	1.5	0
2	ASO Visual Abstract: Establishing Novel Molecular Subtypes of Appendiceal Cancer. Annals of Surgical Oncology, 2022, 29, 2128-2128.	1.5	0
3	Establishing Novel Molecular Subtypes of Appendiceal Cancer. Annals of Surgical Oncology, 2022, 29, 2118-2125.	1.5	6
4	ASO Author Reflections: Entering the Era of Biomarker-Driven Management of the Axilla. Annals of Surgical Oncology, 2022, , .	1.5	0
5	Glioblastoma Embryonic-like Stem Cells Exhibit Immune-Evasive Phenotype. Cancers, 2022, 14, 2070.	3.7	4
6	Epigenetic Signatures Predict Pathologic Nodal Stage in Breast Cancer Patients with Estrogen Receptor-Positive, Clinically Node-Positive Disease. Annals of Surgical Oncology, 2022, 29, 4716-4724.	1.5	5
7	Machine Learning-Based Epigenetic Classifiers for Axillary Staging of Patients with ER-Positive Early-Stage Breast Cancer. Annals of Surgical Oncology, 2022, 29, 6407-6414.	1.5	5
8	A Microcosm of Disparities in Breast Cancer: Comparison Between a Private Hospital and a Safety-Net County Hospital Within Los Angeles County. American Surgeon, 2021, , 000313482199866.	0.8	0
9	Familial Psychosis Associated With a Missense Mutation at MACF1 Gene Combined With the Rare Duplications DUP3p26.3 and DUP16q23.3, Affecting the CNTN6 and CDH13 Genes. Frontiers in Genetics, 2021, 12, 622886.	2.3	3
10	A Systems Approach to Brain Tumor Treatment. Cancers, 2021, 13, 3152.	3.7	21
11	Current Triple-Negative Breast Cancer Subtypes: Dissecting the Most Aggressive Form of Breast Cancer. Frontiers in Oncology, 2021, 11, 681476.	2.8	71
12	ls the 21-Gene Recurrence Score on Core Needle Biopsy Equivalent to Surgical Specimen in Early-Stage Breast Cancer? A Comparison of Gene Expression Between Paired Core Needle Biopsy and Surgical Specimens. Annals of Surgical Oncology, 2021, 28, 5588-5596.	1.5	10
13	Chromatin insulation dynamics in glioblastoma: challenges and future perspectives of precision oncology. Clinical Epigenetics, 2021, 13, 150.	4.1	9
14	Epigenetic Regulation of Immunotherapy Response in Triple-Negative Breast Cancer. Cancers, 2021, 13, 4139.	3.7	10
15	iGlioSub: an integrative transcriptomic and epigenomic classifier for glioblastoma molecular subtypes. BioData Mining, 2021, 14, 42.	4.0	7
16	ASO Visual Abstract: Is the 21-Gene Recurrence Score on Core Needle Biopsy Equivalent to Surgical Specimen in Early-Stage Breast Cancer?. Annals of Surgical Oncology, 2021, 28, 643-644.	1.5	2
17	Abstract P5-05-12: Small molecule targeting regulated cell death pathways in treating triple negative breast cancer. , 2020, , .		0
18	The metastatic microenvironment: Melanoma–microglia crossâ€ŧalk promotes the malignant phenotype of melanoma cells. International Journal of Cancer, 2019, 144, 802-817.	5.1	34

DIEGO M MARZESE

#	Article	IF	CITATIONS
19	Clinicopathological Features of Triple-Negative Breast Cancer Epigenetic Subtypes. Annals of Surgical Oncology, 2019, 26, 3344-3353.	1.5	15
20	Clinical Implications of Transcriptomic Changes After Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Annals of Surgical Oncology, 2019, 26, 3185-3193.	1.5	4
21	Demethylation by low-dose 5-aza-2′-deoxycytidine impairs 3D melanoma invasion partially through miR-199a-3p expression revealing the role of this miR in melanoma. Clinical Epigenetics, 2019, 11, 9.	4.1	12
22	Mitochondrial stress triggers a pro-survival response through epigenetic modifications of nuclear DNA. Cellular and Molecular Life Sciences, 2019, 76, 1397-1417.	5.4	7
23	Commonly integrated epigenetic modifications of differentially expressed genes lead to adaptive resistance in cancer. Epigenomics, 2019, 11, 732-737.	2.1	11
24	B7H3 regulates differentiation and serves as a potential biomarker and theranostic target for human glioblastoma. Laboratory Investigation, 2019, 99, 1117-1129.	3.7	29
25	Epigenetic Classifiers for Precision Diagnosis of Brain Tumors. Epigenetics Insights, 2019, 12, 251686571984028.	2.0	11
26	Cancer Epigenomics on Precision Medicine and Immunotherapy. , 2019, , 483-503.		0
27	Multiplex Gene Profiling of Cell-Free DNA in Patients With Metastatic Melanoma for Monitoring Disease. JCO Precision Oncology, 2018, 2, 1-30.	3.0	13
28	Epigenetic profiling for the molecular classification of metastatic brain tumors. Nature Communications, 2018, 9, 4627.	12.8	79
29	Alternative splicing and cancer metastasis: prognostic and therapeutic applications. Clinical and Experimental Metastasis, 2018, 35, 393-402.	3.3	38
30	The Epigenomic Landscape of Pituitary Adenomas Reveals Specific Alterations and Differentiates Among Acromegaly, Cushing's Disease and Endocrine-Inactive Subtypes. Clinical Cancer Research, 2018, 24, 4126-4136.	7.0	105
31	Epigenomic and Transcriptomic Characterization of Secondary Breast Cancers. Annals of Surgical Oncology, 2018, 25, 3082-3087.	1.5	4
32	KDM6B Counteracts EZH2-Mediated Suppression of <i>IGFBP5</i> to Confer Resistance to PI3K/AKT Inhibitor Treatment in Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 1973-1983.	4.1	35
33	Brain metastasis DNA methylomes, a novel resource for the identification of biological and clinical features. Scientific Data, 2018, 5, 180245.	5.3	18
34	TP73 DNA methylation and upregulation of ΔNp73 are associated with an adverse prognosis in breast cancer. Journal of Clinical Pathology, 2018, 71, 52-58.	2.0	10
35	Abstract 3541: Epigenetic regulation of KPC1 ubiquitin ligase has a regulatory role on the NF-κB pathway in metastatic melanoma. Cancer Research, 2018, 78, 3541-3541.	0.9	1
36	Distinct histone modifications denote early stress-induced drug tolerance in cancer. Oncotarget, 2018, 9, 8206-8222.	1.8	54

DIEGO M MARZESE

#	Article	IF	CITATIONS
37	Mechanisms of immune evasion in triple-negative breast cancer patients Journal of Clinical Oncology, 2018, 36, 1096-1096.	1.6	21
38	Genome-wide chromatin accessibility, DNA methylation and gene expression analysis of histone deacetylase inhibition in triple-negative breast cancer. Genomics Data, 2017, 12, 14-16.	1.3	17
39	Epigenetic Regulation of KPC1 Ubiquitin Ligase Affects the NF-κB Pathway in Melanoma. Clinical Cancer Research, 2017, 23, 4831-4842.	7.0	33
40	MiR-200a Regulates CDK4/6 Inhibitor Effect by Targeting CDK6 in MetastaticÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 1955-1964.	0.7	32
41	Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas. Scientific Reports, 2017, 7, 7079.	3.3	18
42	The RhoJ-BAD signaling network: An Achilles' heel for BRAF mutant melanomas. PLoS Genetics, 2017, 13, e1006913.	3.5	20
43	CCR4 is a determinant of melanoma brain metastasis. Oncotarget, 2017, 8, 31079-31091.	1.8	65
44	ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget, 2017, 8, 75778-75796.	1.8	23
45	Cancer Epigenomics on Precision Medicine and Immunotherapy. , 2017, , 1-21.		Ο
46	Genome–Wide Hypomethylation and Specific Tumor-Related Gene Hypermethylation are Associated with Esophageal Squamous Cell Carcinoma Outcome. Journal of Thoracic Oncology, 2015, 10, 509-517.	1.1	35
47	The CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. Journal of Investigative Dermatology, 2015, 135, 2464-2474.	0.7	90
48	Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics, 2015, 7, 1303-1311.	2.1	18
49	In Situ Sodium Bisulfite Modification of Genomic DNA from Microdissected Melanoma Paraffin-Embedded Archival Tissues. Methods in Molecular Biology, 2015, , 1.	0.9	1
50	Epigenetic variations in breast cancer progression to lymph node metastasis. Clinical and Experimental Metastasis, 2015, 32, 99-110.	3.3	19
51	Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Review of Molecular Diagnostics, 2015, 15, 647-664.	3.1	40
52	Epigenetic Changes of EGFR Have an Important Role in BRAF Inhibitor–Resistant Cutaneous Melanomas. Journal of Investigative Dermatology, 2015, 135, 532-541.	0.7	79
53	Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell and Melanoma Research, 2015, 28, 82-93.	3.3	50
54	Abstract A10: Higher incidence of epigenomic alterations onBRAFandNRASwild type melanoma brain metastases. , 2015, , .		0

4

DIEGO M MARZESE

#	Article	IF	CITATIONS
55	Multi-platform genome-wide analysis of melanoma progression to brain metastasis. Genomics Data, 2014, 2, 150-152.	1.3	16
56	Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Human Molecular Genetics, 2014, 23, 226-238.	2.9	96
57	DNA methylation and gene deletion analysis of brain metastases in melanoma patients identifies mutually exclusive molecular alterations. Neuro-Oncology, 2014, 16, 1499-1509.	1.2	65
58	RASAL2 activates RAC1 to promote triple-negative breast cancer progression. Journal of Clinical Investigation, 2014, 124, 5291-5304.	8.2	72
59	Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Review of Molecular Diagnostics, 2013, 13, 827-844.	3.1	103
60	Epigenetic regulation of <i>REG1A</i> and chemosensitivity of cutaneous melanoma. Epigenetics, 2013, 8, 1043-1052.	2.7	14
61	DNA Methylation Index and Methylation Profile of Invasive Ductal Breast Tumors. Journal of Molecular Diagnostics, 2012, 14, 613-622.	2.8	35
62	Aberrant DNA methylation of cancer-related genes in giant breast fibroadenoma: a case report. Journal of Medical Case Reports, 2011, 5, 516.	0.8	7
63	Simultaneous analysis of the methylation profile of 26 cancer related regions inÂinvasive breast carcinomas by MS-MLPA and drMS-MLPA. Molecular and Cellular Probes, 2010, 24, 271-280.	2.1	20
64	Asymptomatic Becker muscular dystrophy in a family with a multiexon deletion. Muscle and Nerve, 2009, 39, 239-243.	2.2	51
65	MLPA mutation detection in Argentine HNPCC and FAP families. Familial Cancer, 2009, 8, 67-73.	1.9	5
66	Development of a Premature Stop Codon-detection method based on a bacterial two-hybrid system. BMC Biotechnology, 2006, 6, 38.	3.3	6