
Laura Mondragon Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3955009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death and Differentiation, 2021, 28, 2276-2295.	11.2	18
2	Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nature Communications, 2020, 11, 3819.	12.8	71
3	Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. European Urology, 2020, 78, 195-206.	1.9	192
4	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	16.8	34
5	AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Research, 2019, 29, 579-591.	12.0	58
6	Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl α-Ketoglutarate. Cell Reports, 2019, 27, 820-834.e9.	6.4	36
7	Tumor lysis with LTX-401 creates anticancer immunity. Oncolmmunology, 2019, 8, e1594555.	4.6	26
8	Caspase 1/11 Deficiency or Pharmacological Inhibition Mitigates Psoriasis-Like Phenotype inÂMice. Journal of Investigative Dermatology, 2019, 139, 1306-1317.	0.7	16
9	Anticancer effects of anti-CD47 immunotherapy <i>in vivo</i> . Oncolmmunology, 2019, 8, 1550619.	4.6	32
10	Low-Protein Diet Induces IRE1α-Dependent Anticancer Immunosurveillance. Cell Metabolism, 2018, 27, 828-842.e7.	16.2	99
11	Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 2018, 359, 91-97.	12.6	3,689
12	Oncolysis with DTT-205 and DTT-304 generates immunological memory in cured animals. Cell Death and Disease, 2018, 9, 1086.	6.3	20
13	Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus. EMBO Journal, 2018, 37, .	7.8	81
14	Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. Cell Reports, 2017, 20, 2846-2859.	6.4	217
15	Immunosuppressive Î ³ δT cells foster pancreatic carcinogenesis. OncoImmunology, 2016, 5, e1237328.	4.6	11
16	Drug Delivery Strategies of Chemical CDK Inhibitors. Methods in Molecular Biology, 2016, 1336, 141-154.	0.9	2
17	Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene, 2016, 35, 261-268.	5.9	54
18	Low carbohydrate diet prevents Mcl-1-mediated resistance to BH3-mimetics. Oncotarget, 2016, 7, 73270-73279.	1.8	1

#	Article	IF	CITATIONS
19	Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2015, 21, 15506-15510.	3.3	14
20	Apaf1 inhibition promotes cell recovery from apoptosis. Protein and Cell, 2015, 6, 833-843.	11.0	23
21	GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-κB-dependent induction of HIF-1α. Leukemia, 2015, 29, 1163-1176.	7.2	55
22	Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. International Journal of Nanomedicine, 2014, 9, 2597.	6.7	26
23	Apaf-1 Inhibitors Protect from Unwanted Cell Death in In Vivo Models of Kidney Ischemia and Chemotherapy Induced Ototoxicity. PLoS ONE, 2014, 9, e110979.	2.5	22
24	Enzymeâ€Responsive Intracellularâ€Controlled Release Using Silica Mesoporous Nanoparticles Capped with εâ€Polyâ€ <scp>L</scp> â€lysine. Chemistry - A European Journal, 2014, 20, 5271-5281.	3.3	78
25	Cathepsinâ€B Induced Controlled Release from Peptide apped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2014, 20, 15309-15314.	3.3	50
26	Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chemical Communications, 2014, 50, 3184-3186.	4.1	58
27	Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: <i>Mycoplasma</i> Detection. Angewandte Chemie - International Edition, 2013, 52, 8938-8942.	13.8	51
28	Enzymeâ€Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 2013, 19, 1346-1356.	3.3	39
29	Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 2013, 19, 11167-11171.	3.3	31
30	Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice. Blood, 2013, 122, 2402-2411.	1.4	45
31	Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 2012, 28, 14766-14776.	3.5	43
32	Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 10556-10560.	13.8	122
33	Azobenzene Polyesters Used as Gateâ€Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 2012, 18, 13068-13078.	3.3	22
34	Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 2012, 4, 7237.	5.6	39
35	Dual Enzymeâ€Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 2012, 1, 17-20.	1.9	59
36	Molecules that modulate Apafâ€∃ activity. Medicinal Research Reviews, 2011, 31, 649-675.	10.5	21

#	Article	IF	CITATIONS
37	Enzymeâ€Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie - International Edition, 2011, 50, 2138-2140.	13.8	197
38	Finely Tuned Temperatureâ€Controlled Cargo Release Using Paraffinâ€Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 11172-11175.	13.8	143
39	Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides― ACS Nano, 2010, 4, 6353-6368.	14.6	286
40	Molecules That Bind a Central Protein Component of the Apoptosome, Apaf-1, and Modulate Its Activity. , 2010, , 75-94.		1
41	ATPâ€Noncompetitive Inhibitors of CDK–Cyclin Complexes. ChemMedChem, 2009, 4, 19-24.	3.2	20
42	Peptides and Peptide Mimics as Modulators of Apoptotic Pathways. ChemMedChem, 2009, 4, 146-160.	3.2	6
43	A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 182-190.	4.9	31
44	Deciphering the antitumoral activity of quinacrine: Binding to and inhibition of Bcl-xL. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1592-1595.	2.2	15
45	Conformationally Restricted Hydantoinâ€Based Peptidomimetics as Inhibitors of Caspaseâ€3 with Basic Groups Allowed at the S ₃ Enzyme Subsite. ChemMedChem, 2008, 3, 979-985.	3.2	11
46	Modulation of Cellular Apoptosis with Apoptotic Protease-Activating Factor 1 (Apaf-1) Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 521-529.	6.4	65
47	Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters:. Peptides, 2007, 28, 958-968.	2.4	31
48	Solid-phase Chemistry: A Useful Tool to Discover Modulators of Protein Interactions. International Journal of Peptide Research and Therapeutics, 2007, 13, 281-293.	1.9	14