Lawrence P Wackett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3954092/publications.pdf

Version: 2024-02-01

397 papers 6,980 citations

43 h-index 78 g-index

407 all docs

407 docs citations

407 times ranked

5451 citing authors

#	Article	IF	CITATIONS
1	Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry, 1990, 29, 6419-6427.	1.2	420
2	Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & En	4.6	336
3	Complete Nucleotide Sequence and Organization of the Atrazine Catabolic Plasmid pADP-1 from Pseudomonas sp . Strain ADP. Journal of Bacteriology, 2001, 183, 5684-5697.	1.0	324
4	Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnology, 2000, 18, 85-90.	9.4	322
5	Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry, 1988, 27, 1360-1367.	1.2	232
6	The Atrazine Catabolism Genes <i>atzABC</i> Are Widespread and Highly Conserved. Journal of Bacteriology, 1998, 180, 1951-1954.	1.0	225
7	Arthrobacter aurescens TC1 Metabolizes Diverse s-Triazine Ring Compounds. Applied and Environmental Microbiology, 2002, 68, 5973-5980.	1.4	203
8	Molecular Basis of a Bacterial Consortium: Interspecies Catabolism of Atrazine. Applied and Environmental Microbiology, 1998, 64, 178-184.	1.4	187
9	Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nature Biotechnology, 1998, 16, 929-933.	9.4	169
10	The University of Minnesota Biocatalysis/Biodegradation Database: the first decade. Nucleic Acids Research, 2006, 34, D517-D521.	6.5	158
11	Rapid hydrolysis of atrazine to hydroxyatrazine by soil bacteria. Environmental Science & Emp; Technology, 1993, 27, 1943-1946.	4.6	145
12	Microbial Genomics and the Periodic Table. Applied and Environmental Microbiology, 2004, 70, 647-655.	1.4	138
13	Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environmental Microbiology, 2000, 2, 91-98.	1.8	137
14	Manganese(II)-Dependent Extradiol-Cleaving Catechol Dioxygenase fromArthrobacter globiformisCM-2â€. Biochemistry, 1996, 35, 160-170.	1.2	130
15	Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent Identical but Functionally Different. Journal of Bacteriology, 2001, 183, 2405-2410.	1.0	119
16	Biocatalysis and Biodegradation. , 2001, , .		114
17	Widespread Head-to-Head Hydrocarbon Biosynthesis in Bacteria and Role of OleA. Applied and Environmental Microbiology, 2010, 76, 3850-3862.	1.4	108
18	Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature, 1994, 368, 627-629.	13.7	103

#	Article	IF	CITATIONS
19	Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chemistry and Biology, 2001, 8, 891-898.	6.2	102
20	Biomass to fuels via microbial transformations. Current Opinion in Chemical Biology, 2008, 12, 187-193.	2.8	102
21	Biosynthesis and chemical diversity of \hat{l}^2 -lactone natural products. Natural Product Reports, 2019, 36, 458-475.	5.2	101
22	Reductive dehalogenation by cytochrome P450CAM: Substrate binding and catalysis. Biochemistry, 1993, 32, 9355-9361.	1.2	100
23	Mechanism and applications of Rieske non-heme iron dioxygenases. Enzyme and Microbial Technology, 2002, 31, 577-587.	1.6	91
24	The University of Minnesota pathway prediction system: predicting metabolic logic. Nucleic Acids Research, 2008, 36, W427-W432.	6.5	89
25	Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnology Journal, 2005, 3, 475-486.	4.1	86
26	The University of Minnesota Pathway Prediction System: multi-level prediction and visualization. Nucleic Acids Research, 2011, 39, W406-W411.	6.5	85
27	Rapid Evolution of Bacterial Catabolic Enzymes: A Case Study with Atrazine Chlorohydrolaseâ€. Biochemistry, 2001, 40, 12747-12753.	1.2	83
28	Structure, Function, and Insights into the Biosynthesis of a Head-to-Head Hydrocarbon in Shewanella oneidensis Strain MR-1. Applied and Environmental Microbiology, 2010, 76, 3842-3849.	1.4	80
29	Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology (United Kingdom), 2006, 152, 2469-2477.	0.7	77
30	Microbial Pathway Prediction:  A Functional Group Approach. Journal of Chemical Information and Computer Sciences, 2003, 43, 1051-1057.	2.8	74
31	Rat liver protein linking chemical and immunological detoxification systems. Nature, 1992, 360, 269-270.	13.7	73
32	Biodegradation in Waters from Hydraulic Fracturing: Chemistry, Microbiology, and Engineering. Journal of Environmental Engineering, ASCE, 2014, 140, .	0.7	70
33	On the Origins of Cyanuric Acid Hydrolase: Purification, Substrates, and Prevalence of AtzD from Pseudomonas sp. Strain ADP. Applied and Environmental Microbiology, 2003, 69, 3653-3657.	1.4	68
34	Substrate Specificity of Atrazine Chlorohydrolase and Atrazine-Catabolizing Bacteria. Applied and Environmental Microbiology, 2000, 66, 4247-4252.	1.4	65
35	Allophanate Hydrolase, Not Urease, Functions in Bacterial Cyanuric Acid Metabolism. Applied and Environmental Microbiology, 2005, 71, 4437-4445.	1.4	64
36	Cyanobacterial Aldehyde Deformylase Oxygenation of Aldehydes Yields <i>n</i> – 1 Aldehydes and Alcohols in Addition to Alkanes. ACS Catalysis, 2013, 3, 2228-2238.	5.5	58

3

#	Article	IF	Citations
37	Use of the University of Minnesota Biocatalysis/Biodegradation Database for study of microbial degradation. Microbial Informatics and Experimentation, 2012, 2, 1.	7.6	56
38	Microbialâ€based motor fuels: science and technology. Microbial Biotechnology, 2008, 1, 211-225.	2.0	55
39	Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction. Journal of Biological Chemistry, 2011, 286, 10930-10938.	1.6	55
40	Evolution of Enzymes for the Metabolism of New Chemical Inputs into the Environment. Journal of Biological Chemistry, 2004, 279, 41259-41262.	1.6	53
41	Purification and Characterization of Allophanate Hydrolase (AtzF) from Pseudomonas sp. Strain ADP. Journal of Bacteriology, 2005, 187, 3731-3738.	1.0	52
42	Substrate Specificity and Colorimetric Assay for Recombinant TrzN Derived from Arthrobacter aurescens TC1. Applied and Environmental Microbiology, 2005, 71, 2214-2220.	1.4	51
43	Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microbial Biotechnology, 2022, 15, 773-792.	2.0	49
44	TrzN from Arthrobacter aurescens TC1 Is a Zinc Amidohydrolase. Journal of Bacteriology, 2006, 188, 5859-5864.	1.0	47
45	Genomic and Biochemical Studies Demonstrating the Absence of an Alkane-Producing Phenotype in <i>Vibrio furnissii</i> M1. Applied and Environmental Microbiology, 2007, 73, 7192-7198.	1.4	46
46	Î ² -Lactone Synthetase Found in the Olefin Biosynthesis Pathway. Biochemistry, 2017, 56, 348-351.	1.2	45
47	MIF proteins are thetaâ€class glutathione Sâ€transferase homologs. Protein Science, 1993, 2, 2095-2102.	3.1	44
48	Stable isotope probing in biodegradation research. Trends in Biotechnology, 2004, 22, 153-154.	4.9	39
49	<i>In Silico</i> Identification of Bioremediation Potential: Carbamazepine and Other Recalcitrant Personal Care Products. Environmental Science & Envi	4.6	39
50	Engineering microbes to produce biofuels. Current Opinion in Biotechnology, 2011, 22, 388-393.	3.3	38
51	Questioning our perceptions about evolution of biodegradative enzymes. Current Opinion in Microbiology, 2009, 12, 244-251.	2.3	35
52	Stimulus-responsive self-assembly of protein-based fractals by computational design. Nature Chemistry, 2019, 11, 605-614.	6.6	35
53	Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence?. ACS ES&T Water, 2021, 1, 1541-1554.	2.3	35
54	Bacterial Ammeline Metabolism via Guanine Deaminase. Journal of Bacteriology, 2010, 192, 1106-1112.	1.0	33

#	Article	IF	CITATIONS
55	The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochemical Journal, 2020, 477, 2875-2891.	1.7	32
56	Enzymatic Degradation of Chlorodiamino- s -Triazine. Applied and Environmental Microbiology, 2002, 68, 4672-4675.	1.4	31
57	Silica gel-encapsulated AtzA biocatalyst for atrazine biodegradation. Applied Microbiology and Biotechnology, 2012, 96, 231-240.	1.7	31
58	Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters. Applied and Environmental Microbiology, 2014, 80, 4968-4976.	1.4	29
59	X-ray Structure and Mutational Analysis of the Atrazine Chlorohydrolase TrzN. Journal of Biological Chemistry, 2010, 285, 30606-30614.	1.6	28
60	Silicon alkoxide cross-linked silica nanoparticle gels for encapsulation of bacterial biocatalysts. Journal of Materials Chemistry A, 2013, 1, 11051.	5.2	28
61	Adsorption and Biodegradation of Aromatic Chemicals by Bacteria Encapsulated in a Hydrophobic Silica Gel. ACS Applied Materials & Silica G	4.0	28
62	Directed Evolution of New Enzymes and Pathways for Environmental Biocatalysisa. Annals of the New York Academy of Sciences, 1998, 864, 142-152.	1.8	27
63	Purification and Characterization of TrzF: Biuret Hydrolysis by Allophanate Hydrolase Supports Growth. Applied and Environmental Microbiology, 2006, 72, 2491-2495.	1.4	27
64	Defining Sequence Space and Reaction Products within the Cyanuric Acid Hydrolase (AtzD)/Barbiturase Protein Family. Journal of Bacteriology, 2012, 194, 4579-4588.	1.0	27
65	Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synthetic Biology, 2020, 5, .	1.2	27
66	Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry, 2020, 59, 3258-3270.	1.2	27
67	Crystal Structures of <i>Xanthomonas campestris</i> OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids. Biochemistry, 2012, 51, 4138-4146.	1.2	26
68	Characteristic Isotope Fractionation Patterns in <i>>s</i> -Triazine Degradation Have Their Origin in Multiple Protonation Options in the <i>s</i> -Triazine Hydrolase TrzN. Environmental Science & Environmental Science & Technology, 2015, 49, 3490-3498.	4.6	26
69	New Family of Biuret Hydrolases Involved in <i>s</i> -Triazine Ring Metabolism. ACS Catalysis, 2011, 1, 1075-1082.	5 . 5	24
70	C ₂₉ Olefinic Hydrocarbons Biosynthesized by <i>Arthrobacter</i> Species. Applied and Environmental Microbiology, 2009, 75, 1774-1777.	1.4	23
71	Enhanced biodegradation of atrazine by bacteria encapsulated in organically modified silica gels. Journal of Colloid and Interface Science, 2018, 510, 57-68.	5.0	23
72	Plasmid Localization and Organization of Melamine Degradation Genes in Rhodococcus sp. Strain Mel. Applied and Environmental Microbiology, 2012, 78, 1397-1403.	1.4	22

#	Article	IF	CITATIONS
73	Global analysis of adenylate-forming enzymes reveals \hat{l}^2 -lactone biosynthesis pathway in pathogenic Nocardia. Journal of Biological Chemistry, 2020, 295, 14826-14839.	1.6	22
74	Manufacturing of bioreactive nanofibers for bioremediation. Biotechnology and Bioengineering, 2014, 111, 1483-1493.	1.7	21
75	Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis. Journal of Biological Chemistry, 2016, 291, 26698-26706.	1.6	21
76	Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines. Applied and Environmental Microbiology, 2016, 82, 1638-1645.	1.4	21
77	Simulation of the Bottleneck Controlling Access into a Rieske Active Site: Predicting Substrates of Naphthalene 1,2-Dioxygenase. Journal of Chemical Information and Modeling, 2017, 57, 550-561.	2.5	21
78	Global biogeochemical cycles. Environmental Microbiology, 2016, 18, 1088-1089.	1.8	20
79	Why Is the Biodegradation of Polyfluorinated Compounds So Rare?. MSphere, 2021, 6, e0072121.	1.3	20
80	Novel biocatalysis by database mining. Current Opinion in Biotechnology, 2004, 15, 280-284.	3.3	19
81	Modelling and optimization of a bioremediation system utilizing silica gel encapsulated whole-cell biocatalyst. Chemical Engineering Journal, 2015, 259, 574-580.	6.6	19
82	Active Multienzyme Assemblies for Long-Chain Olefinic Hydrocarbon Biosynthesis. Journal of Bacteriology, 2017, 199, .	1.0	18
83	Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Scientific Reports, 2019, 9, 3158.	1.6	18
84	Filling in the Gaps in Metformin Biodegradation: a New Enzyme and a Metabolic Pathway for Guanylurea. Applied and Environmental Microbiology, 2021, 87, .	1.4	17
85	Microbial Degradation of s-Triazine Herbicides. , 2008, , 301-328.		16
86	Thermostable Cyanuric Acid Hydrolase from <i>Moorella thermoacetica</i> ATCC 39073. Applied and Environmental Microbiology, 2009, 75, 6986-6991.	1.4	16
87	Dehalogenation in environmental biotechnology. Current Opinion in Biotechnology, 1994, 5, 260-265.	3.3	15
88	Bacterial Cyanuric Acid Hydrolase for Water Treatment. Applied and Environmental Microbiology, 2015, 81, 6660-6668.	1.4	14
89	Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution. Applied and Environmental Microbiology, 2020, 86, .	1.4	14
90	Engineering of a silica encapsulation platform for hydrocarbon degradation using <i>Pseudomonas sp</i> . NCIB 9816â€4. Biotechnology and Bioengineering, 2016, 113, 513-521.	1.7	12

#	Article	IF	CITATIONS
91	Cloning, purification, crystallization and preliminary X-ray diffraction of the OleC protein fromStenotrophomonas maltophiliainvolved in head-to-head hydrocarbon biosynthesis. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1108-1110.	0.7	11
92	Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom. Journal of Bacteriology, 2013, 195, 5233-5241.	1.0	11
93	Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli. MBio, 2015, 6, e01477-15.	1.8	11
94	Cyanuric Acid Hydrolase from Azorhizobium caulinodans ORS 571: Crystal Structure and Insights into a New Class of Ser-Lys Dyad Proteins. PLoS ONE, 2014, 9, e99349.	1.1	11
95	Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1. MBio, 2021, 12, e0300121.	1.8	10
96	Microwell Fluoride Screen for Chemical, Enzymatic, and Cellular Reactions Reveals Latent Microbial Defluorination Capacity for â^'CF ₃ Groups. Applied and Environmental Microbiology, 2022, 88, e0028822.	1.4	10
97	Production of monodisperse silica gel microspheres for bioencapsulation by extrusion into an oil cross-flow. Journal of Microencapsulation, 2016, 33, 412-420.	1.2	9
98	Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily. Environmental Microbiology, 2018, 20, 2099-2111.	1.8	9
99	Bioâ€based and biodegradable plastics. Microbial Biotechnology, 2019, 12, 1492-1493.	2.0	9
100	Long-term preservation of silica gel-encapsulated bacterial biocatalysts by desiccation. Journal of Sol-Gel Science and Technology, 2015, 74, 823-833.	1.1	8
101	<i>Pseudomonas</i> : versatile biocatalysts for <scp>PFAS</scp> . Environmental Microbiology, 2022, 24, 2882-2889.	1.8	8
102	Thermophiles and thermophilic enzymes. Microbial Biotechnology, 2011, 4, 799-800.	2.0	7
103	Silica ecosystem for synergistic biotransformation. Scientific Reports, 2016, 6, 27404.	1.6	7
104	Evolution of New Enzymes and Pathways: Soil Microbes Adapt to s-Triazine Herbicides. ACS Symposium Series, 2003, , 37-48.	0.5	6
105	Microbial βâ€lactone natural products. Microbial Biotechnology, 2017, 10, 218-220.	2.0	6
106	Purification and Characterization of the Mutant Enzyme W117Y of the Dichloromethane Dehalogenase from Methylophilus sp. Strain DM11. Annals of the New York Academy of Sciences, 1998, 864, 210-213.	1.8	5
107	Atrazine Hydrolysis by a Bacterial Enzyme. ACS Symposium Series, 1998, , 82-87.	0.5	5
108	Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel. Scientific Reports, 2017, 7, 45277.	1.6	5

#	Article	IF	Citations
109	Microbial biocatalysis databases. Microbial Biotechnology, 2018, 11, 429-431.	2.0	5
110	Mechanism of a Standalone Î²â€Łactone Synthetase: New Continuous Assay for a Widespread ANL Superfamily Enzyme. ChemBioChem, 2019, 20, 1701-1711.	1.3	5
111	Microbial industrial enzymes. Microbial Biotechnology, 2019, 12, 405-406.	2.0	5
112	Soil DNA and the microbial metagenome An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Web alert. Environmental Microbiology, 2001, 3, 352-353.	1.8	4
113	Rapid Method Using Two Microbial Enzymes for Detection of <scp>l</scp> -Abrine in Food as a Marker for the Toxic Protein Abrin. Applied and Environmental Microbiology, 2015, 81, 1610-1615.	1.4	4
114	OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis. Biochemical Journal, 2017, 474, 3871-3886.	1.7	4
115	The role of OleA His285 in orchestration of longâ€chain acylâ€coenzyme A substrates. FEBS Letters, 2018, 592, 987-998.	1.3	4
116	Natural product databases. Microbial Biotechnology, 2018, 11, 797-798.	2.0	4
117	<scp>Coreâ€shell</scp> encapsulation formulations to stabilize desiccated <i>Bradyrhizobium</i> against high environmental temperature and humidity. Microbial Biotechnology, 0, , .	2.0	4
118	Genetics of Atrazine and s-Triazine Degradation by Psedomonas sp. Strain ADP and Other Bacteria. ACS Symposium Series, 2000, , 268-282.	0.5	3
119	Quorum sensing. Environmental Microbiology, 2008, 10, 2899-2900.	1.8	3
120	Microbial commercial enzymes. Microbial Biotechnology, 2011, 4, 548-549.	2.0	3
121	Bioremediation of oil spills. Microbial Biotechnology, 2012, 5, 450-451.	2.0	3
122	Crystallization and preliminary X-ray diffraction studies of cyanuric acid hydrolase from <i>Azorhizobium caulinodans</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 880-883.	0.7	3
123	Microbes and antibiotics. Microbial Biotechnology, 2013, 6, 740-741.	2.0	3
124	Microbiology of the built environment. Environmental Microbiology Reports, 2013, 5, 776-777.	1.0	3
125	Microbial strain collections and information. Microbial Biotechnology, 2014, 7, 371-372.	2.0	3
126	Hydrocarbon Biosynthesis in Microorganisms. , 2015, , 13-31.		3

#	Article	IF	CITATIONS
127	Lactic acid bacteria. Microbial Biotechnology, 2016, 9, 525-526.	2.0	3
128	Microbial acid fermentation products. Microbial Biotechnology, 2018, 11, 268-269.	2.0	3
129	Microbial industrial enzymes. Microbial Biotechnology, 2019, 12, 1090-1091.	2.0	3
130	Rings of Power: Enzymatic Routes to β-Lactones. , 2020, , 323-345.		3
131	<i>In Vivo</i> Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and \hat{l}^2 -Lactone Biosynthesis. MBio, 2020, 11, .	1.8	3
132	Microbial biocatalysis and biodegradation informatics. Nature Biotechnology, 1997, 15, 1406-1406.	9.4	2
133	Microbes in biocontrol. Web alert. Environmental Microbiology, 2000, 2, 348-348.	1.8	2
134	Pathways to Discovering New Microbial Metabolism for Functional Genomics and Biotechnology. Advances in Applied Microbiology, 2007, 61, 219-232.	1.3	2
135	Environmental fate of pesticides. Environmental Microbiology, 2007, 9, 3150-3151.	1.8	2
136	Microbial ethanol for fuel and food. Environmental Microbiology, 2008, 10, 278-279.	1.8	2
137	Petroleum microbiology. Microbial Biotechnology, 2012, 5, 579-580.	2.0	2
138	Halophilic microorganisms. Environmental Microbiology Reports, 2012, 4, 467-468.	1.0	2
139	Microbiology for odour production and abatement. Microbial Biotechnology, 2013, 6, 85-86.	2.0	2
140	Bacteria in sand. Environmental Microbiology, 2013, 15, 2144-2145.	1.8	2
141	Permeabilized microbes in biotechnology. Microbial Biotechnology, 2014, 7, 485-486.	2.0	2
142	Antibiosis in the environment. Environmental Microbiology Reports, 2014, 6, 532-533.	1.0	2
143	Microbial adhesion. Environmental Microbiology Reports, 2015, 7, 164-165.	1.0	2
144	Broad specificity microbial enzymes. Microbial Biotechnology, 2015, 8, 188-189.	2.0	2

#	Article	IF	CITATIONS
145	The plant microbiome in biotechnology. Microbial Biotechnology, 2016, 9, 868-870.	2.0	2
146	Arthrobacterand related genera. Microbial Biotechnology, 2016, 9, 136-138.	2.0	2
147	Crystal structures of Moorella thermoacetica cyanuric acid hydrolase reveal conformational flexibility and asymmetry important for catalysis. PLoS ONE, 2019, 14, e0216979.	1.1	2
148	Inexpensive microbial dipstick diagnostic for nitrate in water. Environmental Science: Water Research and Technology, 2019, 5, 406-416.	1.2	2
149	Microbial biotechnology for water treatment. Microbial Biotechnology, 2019, 12, 574-575.	2.0	2
150	Antimicrobial peptides. Microbial Biotechnology, 2019, 12, 180-181.	2.0	2
151	Microbial meat substitutes. Microbial Biotechnology, 2020, 13, 1284-1285.	2.0	2
152	Discovery of an ultraspecific triuret hydrolase (TrtA) establishes the triuret biodegradation pathway. Journal of Biological Chemistry, 2021, 296, 100055.	1.6	2
153	Development of the Organonitrogen Biodegradation Database: Teaching Bioinformatics and Collaborative Skills to Undergraduates during a Pandemic â€. Journal of Microbiology and Biology Education, 2021, 22, .	0.5	2
154	The future of <i>Microbial Biotechnology</i> Microbial Biotechnology, 2022, 15, 79-80.	2.0	2
155	Microbial metabolic engineering. Microbial Biotechnology, 2022, 15, 1666-1667.	2.0	2
156	Annotation for environmental metagenomes. Environmental Microbiology, 2012, 14, 3066-3067.	1.8	1
157	Industrial applications of microbial saltâ€tolerant enzymes. Microbial Biotechnology, 2012, 5, 668-669.	2.0	1
158	Antimicrobial agents on surfaces and in the environment. Environmental Microbiology, 2012, 14, 1347-1348.	1.8	1
159	Microbial mineralization. Environmental Microbiology, 2013, 15, 980-981.	1.8	1
160	Commercial microbial polysaccharides. Microbial Biotechnology, 2013, 6, 314-315.	2.0	1
161	Microbial responses to biocides. Environmental Microbiology, 2013, 15, 3119-3120.	1.8	1
162	Microbial biocontrol agents. Microbial Biotechnology, 2013, 6, 443-444.	2.0	1

#	Article	IF	Citations
163	Identifying Novel Microbial Catalysis by Enrichment Culture and Screening., 2014,, 27-38.		1
164	Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis., 0,, 95-113.		1
165	Metabolic Logic and Pathway Maps. , 2014, , 135-155.		1
166	Anaerobic hydrocarbon biodegradation. Environmental Microbiology, 2014, 16, 2351-2352.	1.8	1
167	Product recovery in microbial biotechnology. Microbial Biotechnology, 2014, 7, 276-277.	2.0	1
168	Nitrogen fixation in microbial biotechnology. Microbial Biotechnology, 2015, 8, 896-897.	2.0	1
169	Fungal bioproducts. Microbial Biotechnology, 2015, 8, 1013-1014.	2.0	1
170	Design of porous silica gels for bioremediation of aromatic hydrocarbons. , 2015, , .		1
171	Pseudomonas. Environmental Microbiology, 2015, 17, 253-254.	1.8	1
172	Engineering microbial consortia for biotechnology. Microbial Biotechnology, 2015, 8, 361-362.	2.0	1
173	Specialty chemicals from microbes. Microbial Biotechnology, 2015, 8, 614-615.	2.0	1
174	Enzyme-based sensors. Microbial Biotechnology, 2016, 9, 430-431.	2.0	1
175	Genomics for natural product discovery. Microbial Biotechnology, 2016, 9, 275-276.	2.0	1
176	Microbial therapeutics. Microbial Biotechnology, 2017, 10, 666-667.	2.0	1
177	Anaerobic consortia and waste treatment. Microbial Biotechnology, 2018, 11, 966-967.	2.0	1
178	Managing microbiomes for human health. Microbial Biotechnology, 2018, 11, 566-567.	2.0	1
179	Web Alert: Environmental viruses of prokaryotes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 2198-2199.	1.8	1
180	Plant microbiomes. Microbial Biotechnology, 2019, 12, 814-815.	2.0	1

#	Article	IF	Citations
181	Microbial nitrogen metabolism: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 1511-1512.	1.8	1
182	Microbial seed treatments. Microbial Biotechnology, 2020, 13, 299-300.	2.0	1
183	Isotope effects in environmental microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 2991-2992.	1.8	1
184	SARSâ€CoVâ€2: Environment and spread: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 2443-2444.	1.8	1
185	Microbial biocontrols in agriculture. Microbial Biotechnology, 2020, 13, 814-815.	2.0	1
186	p-Nitrophenyl esters provide new insights and applications for the thiolase enzyme OleA. Computational and Structural Biotechnology Journal, 2021, 19, 3087-3096.	1.9	1
187	Biodegradation of plastics. Environmental Microbiology Reports, 2021, 13, 73-74.	1.0	1
188	Immobilized microbial cell biocatalysts. Microbial Biotechnology, 2021, 14, 752-753.	2.0	1
189	Web Alert: Amino acids from microbes for biotechnology. Microbial Biotechnology, 2021, 14, 2241-2242.	2.0	1
190	Predicting Microbial Biocatalysis and Biodegradation., 0,, 157-170.		1
191	Biofuels (Butanol-Ethanol Production). , 2016, , 1-6.		1
192	Microbially produced flavors and fragrances. Microbial Biotechnology, 2021, 14, 2711-2712.	2.0	1
193	A Procedure for Removal of Cyanuric Acid in Swimming Pools Using a Cell-Free Thermostable Cyanuric Acid Hydrolase. Journal of Industrial Microbiology and Biotechnology, 2021, , .	1.4	1
194	Microbial responses to fluoride in the environment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2021, 13, 955-956.	1.0	1
195	Microbial genome plasticity: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2022, 24, 535-536.	1.8	1
196	Microbial recycling of plastics. Microbial Biotechnology, 2022, 15, 1017-1018.	2.0	1
197	Toward a molecular understanding of fluoride stress in a model <i>Pseudomonas</i> strain. Environmental Microbiology, 0, , .	1.8	1
198	Microscopy of microorganisms An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 1999, 1, 469-469.	1.8	0

#	Article	IF	CITATIONS
199	Biodegradation An annotated selection of World Wide Web sites relevant to topics in environmental microbiology. Environmental Microbiology, 1999, 1, 105-106.	1.8	O
200	Bioactive natural products from soil microorganisms. Web alert. Environmental Microbiology, 2000, 2, 475-475.	1.8	0
201	Thermophilic bacteriaAn annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2000, 2, 709-709.	1.8	0
202	Microbial biofilmsAn annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Web alert. Environmental Microbiology, 2001, 3, 144-144.	1.8	0
203	Antibiotics and antibiotic resistance in the environmentAn annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology . Web alert. Environmental Microbiology, 2001, 3, 226-227.	1.8	0
204	Microbes inside the Earth and potentially on other planetary bodiesAn annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Web alert. Environmental Microbiology, 2001, 3, 294-295.	1.8	0
205	Microbial oxygenases An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2001, 3, 417-418.	1.8	0
206	The sulphur cycle. An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2001, 3, 480-480.	1.8	0
207	Microbes and heavy metals: metabolism and genomics An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2001, 3, 543-543.	1.8	0
208	Selenium, the environment and microbes An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2001, 3, 604-604.	1.8	0
209	Bacteria and polyhydroxyalkanoates (PHA) An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2001, 3, 667-668.	1.8	0
210	Plasmids and environmental microbiology An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2001, 3, 737-737.	1.8	0
211	Oceanic microorganisms. Environmental Microbiology, 2001, 3, 807-807.	1.8	0
212	Subsurface microbiology. An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology, 2002, 4, 430-431.	1.8	0
213	Horizontal gene transfer. An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2002, 4, 621-622.	1.8	0
214	An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2003, 5, 1221-1222.	1.8	0
215	Stable isotopes and environmental microbiology . An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2003, 5, 534-535.	1.8	0
216	Manganese and bacteria â€'An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2004, 6, 434-435.	1.8	0

#	Article	IF	Citations
217	Desert microbiology and desiccation. An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2004, 6, 764-765.	1.8	O
218	Cave microbiology Environmental Microbiology, 2007, 9, 1610-1611.	1.8	0
219	Evolution of microbial enzymes Environmental Microbiology, 2007, 9, 2903-2904.	1.8	0
220	Bacterial starvation response. Environmental Microbiology Reports, 2011, 3, 414-415.	1.0	0
221	Microbial degradation of personal care products. Environmental Microbiology Reports, 2011, 3, 506-507.	1.0	0
222	Bacterial pan-genomes. Environmental Microbiology Reports, 2011, 3, 638-639.	1.0	0
223	Microbial life on early earth (and other planets?). Environmental Microbiology Reports, 2011, 3, 807-808.	1.0	0
224	Microbes and the carbon cycle. Environmental Microbiology, 2011, 13, 1380-1381.	1.8	0
225	Microbial degradation of personal care products. Environmental Microbiology, 2011, 13, 1901-1902.	1.8	0
226	Microbial storage granules. Environmental Microbiology, 2011, 13, 2600-2601.	1.8	0
227	Microbial degradation of fracking fluid chemicals and enhanced gas production. Environmental Microbiology, 2011, 13, 3075-3076.	1.8	0
228	Wastewater treatment microbiology. Microbial Biotechnology, 2011, 4, 428-429.	2.0	0
229	Bacterial riboswitches. Microbial Biotechnology, 2011, 4, 683-684.	2.0	0
230	Bioavailability of chemicals to microorganisms. Environmental Microbiology Reports, 2012, 4, 569-570.	1.0	0
231	Microbes and gases in natural environments. Environmental Microbiology, 2012, 14, 2614-2615.	1.8	0
232	Systematics of environmental microbes. Environmental Microbiology Reports, 2012, 4, 679-680.	1.0	0
233	Microbiology relevant to hydraulic fracturing and oil sands. Microbial Biotechnology, 2012, 5, 773-774.	2.0	0
234	Microbial omics. Environmental Microbiology, 2012, 14, 282-283.	1.8	0

#	Article	IF	CITATIONS
235	Methanotrophy and methylotrophy. Environmental Microbiology Reports, 2012, 4, 156-157.	1.0	O
236	Antimicrobial agents on surfaces and in the environment. Environmental Microbiology Reports, 2012, 4, 268-269.	1.0	0
237	Remote sensing of microorganisms. Environmental Microbiology, 2012, 14, 830-831.	1.8	0
238	Coal bed methane and microorganisms. Environmental Microbiology, 2012, 14, 1801-1802.	1.8	0
239	Microbial consortia. Environmental Microbiology Reports, 2013, 5, 186-187.	1.0	0
240	Applied metagenomics. Microbial Biotechnology, 2013, 6, 207-208.	2.0	0
241	Bacteria and the transition metals. Environmental Microbiology Reports, 2013, 5, 620-621.	1.0	0
242	Bacteria and arsenic. Environmental Microbiology Reports, 2013, 5, 925-926.	1.0	0
243	Environmental protozoa. Environmental Microbiology, 2013, 15, 305-306.	1.8	0
244	Microbial bioremediation products. Microbial Biotechnology, 2013, 6, 612-613.	2.0	0
245	Metagenomics relevant to oil and gas production. Environmental Microbiology Reports, 2013, 5, 490-491.	1.0	0
246	Atmospheric microbiology. Environmental Microbiology, 2013, 15, 1659-1660.	1.8	0
247	Deep sea and land microbiology. Environmental Microbiology, 2013, 15, 2629-2630.	1.8	0
248	Microbial community metabolism. Environmental Microbiology Reports, 2013, 5, 333-334.	1.0	0
249	General Concepts in Biodegradation and Biocatalysis. , 0, , 1-5.		0
250	The Impact of Genomics on Microbial Catalysis. , 0, , 191-204.		0
251	The Extent of Microbial Catalysis and Biodegradation: Are Microbes Infallible?. , 2014, , 205-212.		0
252	A History of Concepts in Biodegradation and Microbial Catalysis. , 2014, , 7-25.		0

#	Article	IF	CITATIONS
253	Organic Functional Group Diversity: The Unity of Biochemistry Is Dwarfedby Its Diversity., 2014,, 71-93.		O
254	Diverse hydrocarbon biosynthesis by bacteria. Environmental Microbiology Reports, 2014, 6, 802-803.	1.0	0
255	Fluorescent methods in environmental microbiology. Environmental Microbiology Reports, 2014, 6, 415-416.	1.0	O
256	Viable but nonâ€culturable concept in environment microbiology. Environmental Microbiology, 2014, 16, 3581-3582.	1.8	0
257	Membrane transport of environmental chemicals. Environmental Microbiology Reports, 2014, 6, 123-124.	1.0	0
258	Methanotroph biotechnology. Microbial Biotechnology, 2014, 7, 86-87.	2.0	0
259	Enzyme modeling in environmental microbiology. Environmental Microbiology, 2014, 16, 904-905.	1.8	0
260	Preventing microbial adherence. Microbial Biotechnology, 2014, 7, 638-639.	2.0	0
261	Microbial extracellular enzymes used industrially. Environmental Microbiology, 2014, 16, 1452-1453.	1.8	0
262	Microbes and rare earth elements. Environmental Microbiology Reports, 2014, 6, 307-308.	1.0	0
263	Oxygenases and biodegradation. Environmental Microbiology Reports, 2014, 6, 208-209.	1.0	0
264	Bacterial communication. Environmental Microbiology, 2014, 16, 2995-2996.	1.8	0
265	Cycloalkanes and bacteria. Environmental Microbiology, 2014, 16, 333-334.	1.8	0
266	Product microbial disinfection and biotechnology. Microbial Biotechnology, 2015, 8, 747-748.	2.0	0
267	Fungal toxins and diseases. Environmental Microbiology, 2015, 17, 3110-3111.	1.8	0
268	Plant pathogenic microorganisms. Environmental Microbiology, 2015, 17, 4143-4144.	1.8	0
269	Microbial growth on reduced C1compounds. Environmental Microbiology, 2015, 17, 2557-2558.	1.8	0
270	Web Alert: Pathogen ecology. Environmental Microbiology, 2015, 17, 4816-4817.	1.8	0

#	Article	IF	CITATIONS
271	Hydrogen and electron transfer between microorganisms. Environmental Microbiology Reports, 2015, 7, 383-384.	1.0	0
272	Isotope fractionation in environmental microbiology. Environmental Microbiology, 2015, 17, 3427-3428.	1.8	0
273	Arthrobacterand related genera. Environmental Microbiology Reports, 2015, 7, 1005-1006.	1.0	O
274	Environmental microbes and metalloid elements. Environmental Microbiology, 2015, 17, 2190-2191.	1.8	0
275	Enhancement of biodegradation. Environmental Microbiology, 2015, 17, 1836-1837.	1.8	O
276	Web Alert:Arthrobacterand related genera. Environmental Microbiology, 2015, 17, 5109-5110.	1.8	0
277	Horizontal gene transfer in environmental microbes. Environmental Microbiology Reports, 2015, 7, 810-811.	1.0	0
278	Pathogens in the environment. Environmental Microbiology, 2015, 17, 1475-1476.	1.8	0
279	Dessication and cryoprotection. Environmental Microbiology, 2015, 17, 541-541.	1.8	0
280	Isoprene and isoprenoid compounds. Environmental Microbiology Reports, 2015, 7, 590-591.	1.0	0
281	Microbes and Reduced Phosphorus Compounds. Environmental Microbiology Reports, 2015, 7, 687-688.	1.0	0
282	Cyanobacterial genomics. Environmental Microbiology, 2016, 18, 739-740.	1.8	0
283	Web Alert: Endophytic microbes. Environmental Microbiology Reports, 2016, 8, 323-324.	1.0	0
284	Web Alert: Drugs from Marine Microbes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2016, 18, 5303-5304.	1.8	0
285	Web Alert: Bacteria, mercury and the environment. Environmental Microbiology Reports, 2016, 8, 162-163.	1.0	0
286	Web Alert: Microbial enhancement of agricultural crops: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2016, 18, 2287-2288.	1.8	0
287	Web Alert: Microbial mutualism: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2016, 18, 2769-2771.	1.8	0
288	Web Alert: Ecophysiology of anaerobes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2016, 18, 3203-3204.	1.8	0

#	Article	IF	CITATIONS
289	Microbial responses to temperature change: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2016, 8, 545-546.	1.0	o
290	Web Alert: Electron microscopy in environmental microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2016, 18, 4303-4305.	1.8	0
291	Microbial nitrification: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2016, 8, 1067-1068.	1.0	O
292	Web Alert: Silicon and microorganisms: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2016, 18, 3606-3608.	1.8	0
293	Fluorine and microorganisms: An annotated selection of world wide web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2016, 8, 937-938.	1.0	0
294	Web Alert: Biofilms for water treatment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2016, 8, 424-425.	1.0	0
295	Bacterial longâ€term survival mechanisms. Environmental Microbiology, 2016, 18, 302-303.	1.8	O
296	Web Alert: Biosynthesis of hydrocarbons by environmental microbes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 409-410.	1.8	0
297	Web alert: Microbes and environmental urea: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 1355-1357.	1.8	0
298	Web alert: Microbial Environmental Stress Response: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 833-834.	1.8	0
299	Web alert: Microbial dehalogenation: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 2101-2103.	1.8	O
300	Microbial enzyme secretion. Microbial Biotechnology, 2017, 10, 513-514.	2.0	0
301	Streptomyces: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2017, 9, 319-320.	1.0	O
302	Web alert: Ice microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 2520-2522.	1.8	0
303	Web alert: Human microbiome: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 1687-1688.	1.8	O
304	Antibiotics in the environment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2017, 9, 174-175.	1.0	0
305	The future of environmental microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2017, 9, 51-52.	1.0	0
306	Web alert: Microbial enhancement of plant growth: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 3784-3785.	1.8	0

#	Article	IF	Citations
307	Bacillus thuringiensis: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2017, 9, 467-468.	1.0	O
308	Web alert: Radiation- and desiccation-resistant bacteria: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 2916-2917.	1.8	0
309	Nitrous oxide and microorganisms: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2017, 19, 5146-5147.	1.8	O
310	Antarctic bacteria: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2017, 9, 809-810.	1.0	0
311	Biofuels (Butanol-Ethanol Production). , 2017, , 27-32.		0
312	Milestones in environmental microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2018, 10, 108-109.	1.0	0
313	Protein tagging in environmental microbiology: An annotated selection of World Wide Web sites relevant to the topics in <i>environmental microbiology</i> 1904-1905.	1.8	0
314	Protista: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2018, 10, 226-227.	1.0	0
315	Horizontal gene transfer (HGT) in biodegradation: An annotated selection of world wide web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 920-921.	1.8	0
316	Microbial chemotaxis in the environment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 420-421.	1.8	0
317	The future of environmental microbiology: a perspective. Environmental Microbiology, 2018, 20, 1988-1990.	1.8	0
318	Microbial degradation of agricultural chemicals: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2018, 10, 718-719.	1.0	0
319	Diverse final electron acceptors: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 4194-4195.	1.8	0
320	Bacteria and oxidative stress: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 4629-4630.	1.8	0
321	Antibiotic resistance: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 3457-3458.	1.8	0
322	Global microbial metagenomics: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 3127-3128.	1.8	0
323	Enzyme evolution. Microbial Biotechnology, 2018, 11, 1207-1208.	2.0	0
324	Microbial chemolithotrophy: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2018, 10, 606-607.	1.0	0

#	Article	IF	CITATIONS
325	Web Alert: Pseudomonas (a tribute to Noberto Palleroni): An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 3902-3903.	1.8	0
326	Microbial enrichment culturing: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2018, 10, 394-395.	1.0	0
327	Nitrogen gene regulation in environmental microbes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 1296-1297.	1.8	O
328	Microbial halogenated products in the environment: An annotated selection of world wide web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2018, 20, 2317-2318.	1.8	0
329	Microbial Cellulose Degradation: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 3183-3184.	1.8	O
330	Microbial growth at low nutrient concentrations: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 2610-2611.	1.8	0
331	Rhizobial strains. Environmental Microbiology Reports, 2019, 11, 616-617.	1.0	O
332	Bacteria, viruses and precipitation: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 4460-4461.	1.8	0
333	Microbes and surfactants: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 3965-3966.	1.8	O
334	Web Alert: Evolution for microbial degradation of chemicals: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 3528-3529.	1.8	O
335	Plant leaf microbial communities: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2019, 11, 736-737.	1.0	0
336	Evolutionary microbial ecology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2019, 11, 48-49.	1.0	O
337	Web Alert: Biodegradation of personal care products (PCPs): An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2019, 11, 474-475.	1.0	0
338	Microbial diversity and the environment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 1881-1882.	1.8	0
339	Microbiology relevant to humanâ€built structures: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2019, 11, 271-272.	1.0	0
340	Disinfection of microbes in different environments: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 1170-1171.	1.8	0
341	Web Alert: Microbial UV-protection: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 880-881.	1.8	0
342	Web Alert: Rubisco in bacteria: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 4888-4889.	1.8	0

#	Article	IF	Citations
343	Web Alert: Modeling environmental co-cultures: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2019, 11, 861-862.	1.0	0
344	Microbiology of produced waters: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2019, 21, 511-512.	1.8	0
345	Web Alert: Microbial enzyme evolution in nature: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 520-522.	1.8	0
346	<i>Streptomyces</i> in biotechnology. Microbial Biotechnology, 2020, 13, 2077-2078.	2.0	0
347	Marine microbial physiology. Environmental Microbiology Reports, 2020, 12, 466-467.	1.0	0
348	Polyunsaturated lipids in the environment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 4067-4068.	1.8	0
349	Vibrio database data and tools: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 4505-4506.	1.8	0
350	Viable but nonculturable bacteria: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2020, 12, 613-614.	1.0	0
351	Osmoprotectants in prokaryotes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 3608-3609.	1.8	0
352	Microbial production of feedstock chemicals. Microbial Biotechnology, 2020, 13, 1685-1686.	2.0	0
353	Cyanobacterial metabolites: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 5483-5484.	1.8	0
354	Pharmaceuticals and microbes in wastewater: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 4890-4891.	1.8	0
355	Phosphorus and Microbe: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2020, 12, 718-719.	1.0	0
356	Web Alert: Marine microbiology databases: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2020, 22, 1963-1964.	1.8	0
357	Microbial membrane vesicles: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2020, 12, 362-363.	1.0	0
358	Web Alert: Quorum sensing. Environmental Microbiology, 2020, 22, 1167-1168.	1.8	0
359	Insect microbiomes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2020, 12, 250-251.	1.0	0
360	Web Alert: Microbiology of water treatment plants. Environmental Microbiology, 2020, 22, 796-797.	1.8	0

#	Article	IF	CITATIONS
361	Microbes in food biotechnology. Microbial Biotechnology, 2020, 13, 605-606.	2.0	O
362	Fluorinated compound biodegradation: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2020, 12, 110-111.	1.0	0
363	Web Alert: Drugs and microbiomes. Environmental Microbiology, 2020, 22, 1666-1667.	1.8	0
364	In situ physicoâ€chemical methods in environmental microbiology. Environmental Microbiology, 2021, 23, 525-526.	1.8	0
365	Microbiology of atmospheric science. Environmental Microbiology, 2021, 23, 1298-1299.	1.8	0
366	Virus evolution: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2021, 13, 238-239.	1.0	0
367	Bacterial macro―and medium hain lactones: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 1805-1806.	1.8	0
368	Microbeâ€plant interactions: Digging deeper: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 2331-2332.	1.8	0
369	Microbial intestinal therapeutics. Microbial Biotechnology, 2021, 14, 1243-1244.	2.0	0
370	Microbial Rhodopsins: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2021, 13, 407-408.	1.0	0
371	Extracellular DNA in the Environment: Relevance to Microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 2704-2705.	1.8	0
372	Microaerophilic bacteria: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 3332-3333.	1.8	0
373	Viral mutations and spread: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 4074-4075.	1.8	0
374	Microbes and climate change: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2021, 13, 555-556.	1.0	0
375	Storage stabilization of microbes for biotechnology. Microbial Biotechnology, 2021, 14, 1857-1857.	2.0	0
376	Microbial oxygenases in the environment. Environmental Microbiology, 2021, 23, 4838-4839.	1.8	0
377	Soil microbiomes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2021, 13, 753-754.	1.0	0
378	Slow bacterial growth in the environment: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 5650-5651.	1.8	0

#	Article	IF	CITATIONS
379	Web Alert: Vaccines against infectious agents. Microbial Biotechnology, 2021, 14, 318-320.	2.0	О
380	Regulation of catabolic genes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 6344-6345.	1.8	0
381	Microbial culture collections An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2000, 2, 119-120.	1.8	0
382	Microbes and metals An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environmental Microbiology, 2000, 2, 239-240.	1.8	0
383	Diversity and Taxonomy of Aliphatic Hydrocarbon Producers. , 2019, , 431-450.		0
384	Microbial degradation of guanidinium compounds: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 7255-7256.	1.8	0
385	Carbon dioxide fixation by microbes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2022, 14, 179-180.	1.0	0
386	New advances in antiâ€microbials. Microbial Biotechnology, 2022, 15, 717-718.	2.0	0
387	Microbes and metals: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2022, 24, 981-982.	1.8	0
388	Microbiomes and drug metabolism: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2022, 24, 1687-1688.	1.8	0
389	Microbial extraction of rare earth metals. Microbial Biotechnology, 2022, 15, 1296-1297.	2.0	0
390	Transporters in microbial biodegradation. Environmental Microbiology Reports, 2022, 14, 321-322.	1.0	0
391	Web Alert: <i>Bacillus</i> i> in microbial biotechnology. Microbial Biotechnology, 2022, 15, 387-388.	2.0	0
392	Alternatives to antibiotics in agriculture: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2021, 23, 7741-7742.	1.8	0
393	Methylotrophs and methanotrophs: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2022, 24, 2177-2178.	1.8	0
394	Aquaculture microbiology: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology Reports, 2022, 14, 475-476.	1.0	0
395	<i>Pseudomonas</i> in biotechnology. Microbial Biotechnology, 2022, 15, 1922-1923.	2.0	0
396	Anaerobic ammonia oxidation: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2022, 24, 2605-2606.	1.8	0

#	Article	lF	CITATIONS
397	Microbes and toxic aldehydes: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology. Environmental Microbiology, 2022, 24, 2854-2855.	1.8	O