Guihua Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953116/publications.pdf

Version: 2024-02-01

292 papers 53,941 citations

944 115 h-index 225 g-index

302 all docs 302 docs citations

302 times ranked 42938 citing authors

#	Article	IF	CITATIONS
1	Dimensionality effect of conductive carbon fillers in LiNi1/3Mn1/3Co1/3O2 cathode. Carbon, 2022, 188, 114-125.	5.4	10
2	Highly Elastic Interconnected Porous Hydrogels through Selfâ€Assembled Templating for Solar Water Purification. Angewandte Chemie, 2022, 134, e202114074.	1.6	16
3	Organic Electrolytes for pHâ€Neutral Aqueous Organic Redox Flow Batteries. Advanced Functional Materials, 2022, 32, 2108777.	7.8	43
4	Highly Elastic Interconnected Porous Hydrogels through Selfâ€Assembled Templating for Solar Water Purification. Angewandte Chemie - International Edition, 2022, 61, e202114074.	7.2	70
5	Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie, 2022, 134, .	1.6	11
6	Dualâ€ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	14
7	Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	95
8	Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548.	11.1	50
9	Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Accounts of Chemical Research, 2022, 55, 759-769.	7.6	58
10	Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 2022, 34, e2110079.	11.1	106
10	Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Host–Guest Chemistry. Small, 2022, 18, e2107055.	11.1 5.2	106
	Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on		
11	Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Host–Guest Chemistry. Small, 2022, 18, e2107055.		6
11 12	Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Host–Guest Chemistry. Small, 2022, 18, e2107055. Materials Innovation for Global Water Sustainability. , 2022, 4, 713-714.	5.2	20
11 12 13	Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Host–Guest Chemistry. Small, 2022, 18, e2107055. Materials Innovation for Global Water Sustainability. , 2022, 4, 713-714. Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage.	5.2 4.5	6 20 37
11 12 13	Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Hostâ€"Guest Chemistry. Small, 2022, 18, e2107055. Materials Innovation for Global Water Sustainability., 2022, 4, 713-714. Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage. ACS Nano, 2022, 16, 4805-4812. A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€6cale Passive Dehumidification. Advanced	5.2 4.5 7.3	6 20 37 52
11 12 13 14	Materials, 2022, 34, e2110079. Bioâ€Derived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Host–Guest Chemistry. Small, 2022, 18, e2107055. Materials Innovation for Global Water Sustainability. , 2022, 4, 713-714. Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage. ACS Nano, 2022, 16, 4805-4812. A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€6cale Passive Dehumidification. Advanced Materials, 2022, 34, e2200865. A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient	5.2 4.5 7.3	6 20 37 52 36

#	Article	IF	CITATIONS
19	A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification (Adv.) Tj ETQq1 1	0.784314	gBT /Ove
20	General Synthesis of Large Inorganic Nanosheets via 2D Confined Assembly of Nanoparticles. ACS Central Science, 2022, 8, 627-635.	5.3	7
21	Design principles of hydrogen-evolution-suppressing single-atom catalysts for aqueous electrosynthesis. Chem Catalysis, 2022, 2, 1277-1287.	2.9	19
22	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
23	Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nature Communications, 2022, 13, 2761.	5.8	91
24	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	11.1	53
25	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie, 2022, 134, .	1.6	3
26	Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry, 2022, 6, 524-543.	13.8	93
27	Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. Journal of the American Chemical Society, 2022, 144, 11444-11455.	6.6	63
28	Multiscale Understanding and Architecture Design of High Energy/Power Lithiumâ€lon Battery Electrodes. Advanced Energy Materials, 2021, 11, 2000808.	10.2	143
29	Gelâ€Derived Amorphous Bismuth–Nickel Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. Angewandte Chemie - International Edition, 2021, 60, 4275-4281.	7.2	90
30	Gelâ€Derived Amorphous Bismuth–Nickel Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. Angewandte Chemie, 2021, 133, 4321-4327.	1.6	10
31	Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems. Angewandte Chemie, 2021, 133, 4368-4374.	1.6	5
32	Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems. Angewandte Chemie - International Edition, 2021, 60, 4322-4328.	7.2	18
33	Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2021, 20, 76-83.	13.3	432
34	Polyeutectic-based stable and effective electrolytes for high-performance energy storage systems. Energy and Environmental Science, 2021, 14, 931-939.	15.6	21
35	High-performance magnesium metal batteries $\langle i \rangle via \langle i \rangle$ switching the passivation film into a solid electrolyte interphase. Energy and Environmental Science, 2021, 14, 4391-4399.	15.6	49
36	A General Strategy of Anion-Rich High-Concentration Polymeric Interlayer for High-Voltage, All-Solid-State Batteries. Nano Letters, 2021, 21, 1184-1191.	4.5	29

#	Article	lF	Citations
37	Liquid Alloy Enabled Solidâ€State Batteries for Conformal Electrode–Electrolyte Interfaces. Advanced Functional Materials, 2021, 31, 2010863.	7.8	29
38	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006629.	11.1	80
39	Pulverizing Fe ₂ O ₃ Nanoparticles for Developing Fe ₃ C/Nâ€Codoped Carbon Nanoboxes with Multiple Polysulfide Anchoring and Converting Activity in Liâ€6 Batteries. Advanced Functional Materials, 2021, 31, 2011249.	7.8	79
40	General Design Methodology for Organic Eutectic Electrolytes toward Highâ€Energyâ€Density Redox Flow Batteries. Advanced Materials, 2021, 33, e2008560.	11.1	25
41	Highâ€Yield and Lowâ€Cost Solar Water Purification via Hydrogelâ€Based Membrane Distillation. Advanced Functional Materials, 2021, 31, 2101036.	7.8	90
42	Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS Nano, 2021, 15, 6735-6746.	7.3	95
43	Lithiumâ€ion Batteries: Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€ion Batteries (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170093.	11.1	4
44	Engineering Hydrogels for Efficient Solar Desalination and Water Purification. Accounts of Materials Research, 2021, 2, 374-384.	5.9	92
45	From Fundamental Understanding to Engineering Design of Highâ€Performance Thick Electrodes for Scalable Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2101275.	11.1	89
46	Solar Water Purification: High‥ield and Low ost Solar Water Purification via Hydrogelâ€Based Membrane Distillation (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170135.	7.8	4
47	Carbon Materials for Solar Water Evaporation and Desalination. Small, 2021, 17, e2007176.	5.2	186
48	Hybrid Electrolyte Engineering Enables Safe and Wideâ€Temperature Redox Flow Batteries. Angewandte Chemie, 2021, 133, 15155-15162.	1.6	3
49	Hybrid Electrolyte Engineering Enables Safe and Wideâ€Temperature Redox Flow Batteries. Angewandte Chemie - International Edition, 2021, 60, 15028-15035.	7.2	32
50	Design Principles and Applications of Nextâ€Generation Highâ€Energyâ€Density Batteries Based on Liquid Metals. Advanced Materials, 2021, 33, e2100052.	11.1	38
51	Novel Quasiâ€Liquid Kâ€Na Alloy as a Promising Dendriteâ€Free Anode for Rechargeable Potassium Metal Batteries. Advanced Science, 2021, 8, e2101866.	5.6	18
52	Multifunctional hydrogels for sustainable energy and environment. Polymer International, 2021, 70, 1425-1432.	1.6	33
53	Solar Water Evaporation Toward Water Purification and Beyond. , 2021, 3, 1112-1129.		107
54	A Chemistry and Microstructure Perspective on Ionâ€Conducting Membranes for Redox Flow Batteries. Angewandte Chemie - International Edition, 2021, 60, 24770-24798.	7.2	76

#	Article	IF	CITATIONS
55	Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Nano Letters, 2021, 21, 5896-5904.	4. 5	66
56	Anode Materials: Design Principles and Applications of Nextâ€Generation Highâ€Energyâ€Density Batteries Based on Liquid Metals (Adv. Mater. 29/2021). Advanced Materials, 2021, 33, 2170226.	11.1	1
57	A Chemistry and Microstructure Perspective on Ionâ€Conducting Membranes for Redox Flow Batteries. Angewandte Chemie, 2021, 133, 24974.	1.6	2
58	Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nature Communications, 2021, 12, 4519.	5.8	139
59	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
60	Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Research, 2021, 14, 3562-3575.	5.8	30
61	Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021, 4, 868-876.	11.5	264
62	Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation. Advanced Materials, 2021, 33, e2102994.	11.1	105
63	Optimal electrode-scale design of Li-ion electrodes: A general correlation. Energy Storage Materials, 2021, 39, 176-185.	9.5	16
64	Ultrahigh-Capacity and Scalable Architected Battery Electrodes <i>via</i> Tortuosity Modulation. ACS Nano, 2021, 15, 19109-19118.	7.3	48
65	Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Materials Horizons, 2021, 8, 1795-1804.	6.4	176
66	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
67	Polymeric materials for solar water purification. Journal of Polymer Science, 2021, 59, 3084-3099.	2.0	21
68	Transport In and Optimization of Aligned-Channel Li-Ion Electrode Architectures. Journal of the Electrochemical Society, 2021, 168, 100536.	1.3	4
69	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, $2021, 2, \ldots$	2.6	17
70	Building Efficient Ion Pathway in Highly Densified Thick Electrodes with High Gravimetric and Volumetric Energy Densities. Nano Letters, 2021, 21, 9339-9346.	4.5	31
71	Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodiumâ€ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 2020, 4, 1900673.	4.6	47
72	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	5.2	69

#	Article	IF	CITATIONS
73	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163
74	Enhanced Surface Interactions Enable Fast Li ⁺ Conduction in Oxide/Polymer Composite Electrolyte. Angewandte Chemie, 2020, 132, 4160-4166.	1.6	27
75	Flexible sodium-ion based energy storage devices: Recent progress and challenges. Energy Storage Materials, 2020, 26, 83-104.	9.5	100
76	Enhanced Surface Interactions Enable Fast Li ⁺ Conduction in Oxide/Polymer Composite Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 4131-4137.	7.2	242
77	Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Materials Today, 2020, 35, 78-86.	8.3	88
78	A mini review on two-dimensional nanomaterial assembly. Nano Research, 2020, 13, 1179-1190.	5. 8	36
79	Hierarchically Porous C/Fe ₃ C Membranes with Fast Ion-Transporting Channels and Polysulfide-Trapping Networks for High-Areal-Capacity Li–S Batteries. Nano Letters, 2020, 20, 701-708.	4.5	72
80	A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie, 2020, 132, 22799-22805.	1.6	23
81	Low-Temperature Multielement Fusible Alloy-Based Molten Sodium Batteries for Grid-Scale Energy Storage. ACS Central Science, 2020, 6, 2287-2293.	5. 3	21
82	Preface: Special topic on electrocatalysis & Energy science. Science China Chemistry, 2020, 63, 1515-1516.	4.2	0
83	Super Moisture Absorbent Gels for Sustainable Agriculture via Atmospheric Water Irrigation. , 2020, 2, 1419-1422.		82
84	Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Accounts of Chemical Research, 2020, 53, 1648-1659.	7.6	143
85	Rù⁄4cktitelbild: A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22992-22992.	1.6	0
86	Topologyâ€Controlled Hydration of Polymer Network in Hydrogels for Solarâ€Driven Wastewater Treatment. Advanced Materials, 2020, 32, e2007012.	11.1	225
87	Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Applied Physics Reviews, 2020, 7, .	5. 5	43
88	Hierarchical Metalâ€Organic Framework Films with Controllable Meso/Macroporosity. Advanced Science, 2020, 7, 2002368.	5.6	32
89	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	6.6	188
90	Boosting Electrocatalytic Ammonia Production through Mimicking "π Back-Donation― CheM, 2020, 6, 2690-2702.	5.8	88

#	Article	IF	Citations
91	Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nature Communications, 2020, 11, 3843.	5.8	76
92	Redistributing Liâ€lon Flux by Parallelly Aligned Holey Nanosheets for Dendriteâ€Free Li Metal Anodes. Advanced Materials, 2020, 32, e2003920.	11.1	81
93	Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Advanced Materials, 2020, 32, e2005763.	11.1	64
94	Janus Conductive/Insulating Microporous Ion-Sieving Membranes for Stable Li–S Batteries. ACS Nano, 2020, 14, 13852-13864.	7.3	74
95	A Surfaceâ€6trained and Geometryâ€∓ailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22610-22616.	7.2	100
96	Molecular Engineering of Azobenzeneâ€Based Anolytes Towards Highâ€Capacity Aqueous Redox Flow Batteries. Angewandte Chemie - International Edition, 2020, 59, 22163-22170.	7.2	65
97	Molecular Engineering of Azobenzeneâ€Based Anolytes Towards Highâ€Capacity Aqueous Redox Flow Batteries. Angewandte Chemie, 2020, 132, 22347-22354.	1.6	19
98	Scalable High-Areal-Capacity Li–S Batteries Enabled by Sandwich-Structured Hierarchically Porous Membranes with Intrinsic Polysulfide Adsorption. Nano Letters, 2020, 20, 6922-6929.	4.5	47
99	Understanding Charge Storage in Hydrated Layered Solids MOPO ₄ (M = V, Nb) with Tunable Interlayer Chemistry. ACS Nano, 2020, 14, 13824-13833.	7.3	6
100	Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. Advanced Materials, 2020, 32, e2003191.	11.1	78
101	Atmospheric Water Harvesting: A Review of Material and Structural Designs. , 2020, 2, 671-684.		274
102	Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism. Nano Today, 2020, 32, 100870.	6.2	83
103	Roomâ€Temperature Allâ€Liquidâ€Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting. Advanced Materials, 2020, 32, e2002577.	11.1	102
104	O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Science Advances, 2020, 6, eaba6586.	4.7	263
105	When graphite meets Li metal. National Science Review, 2020, 7, 1521-1522.	4.6	3
106	Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy and Environmental Science, 2020, 13, 2087-2095.	15.6	236
107	Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5, 388-401.	23.3	784
108	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646

#	Article	IF	CITATIONS
109	Next-Generation Liquid Metal Batteries Based on the Chemistry of Fusible Alloys. ACS Central Science, 2020, 6, 1355-1366.	5.3	67
110	Evaporationâ€Induced Vertical Alignment Enabling Directional Ion Transport in a 2Dâ€Nanosheetâ€Based Battery Electrode. Advanced Materials, 2020, 32, e1907941.	11.1	66
111	Understanding Thickness-Dependent Transport Kinetics in Nanosheet-Based Battery Electrodes. Chemistry of Materials, 2020, 32, 1684-1692.	3.2	68
112	Single vs double atom catalyst for N ₂ activation in nitrogen reduction reaction: A DFT perspective. EcoMat, 2020, 2, e12014.	6.8	75
113	Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63, 1570-1577.	4.2	27
114	A Ternary Hybridâ€Cation Roomâ€Temperature Liquid Metal Battery and Interfacial Selection Mechanism Study. Advanced Materials, 2020, 32, e2000316.	11,1	40
115	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendriteâ€Free Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie, 2020, 132, 12268-12275.	1.6	9
116	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendriteâ€Free Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12170-12177.	7.2	41
117	Biomassâ€Derived Hybrid Hydrogel Evaporators for Costâ€Effective Solar Water Purification. Advanced Materials, 2020, 32, e1907061.	11.1	436
118	Inorganic Gel-Derived Metallic Frameworks Enabling High-Performance Silicon Anodes. Nano Letters, 2019, 19, 6292-6298.	4.5	63
119	"Fishnet-like―ion-selective nanochannels in advanced membranes for flow batteries. Journal of Materials Chemistry A, 2019, 7, 21112-21119.	5.2	50
120	General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity., 2019, 1, 265-271.		35
121	Pathways to Widespread Applications: Development of Redox Flow Batteries Based on New Chemistries. CheM, 2019, 5, 1964-1987.	5.8	105
122	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€Temperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	7.8	560
123	Room-temperature liquid metal and alloy systems for energy storage applications. Energy and Environmental Science, 2019, 12, 2605-2619.	15.6	122
124	Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 2019, 5, eaaw5484.	4.7	600
125	Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. ACS Nano, 2019, 13, 7913-7919.	7.3	354
126	Probing Enhanced Site Activity of Co–Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis. ACS Energy Letters, 2019, 4, 1793-1802.	8.8	99

#	Article	IF	Citations
127	Ultrafast Intercalation Enabled by Strong Solvent–Host Interactions: Understanding Solvent Effect at the Atomic Level. Angewandte Chemie - International Edition, 2019, 58, 17205-17209.	7.2	19
128	Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research, 2019, 52, 3244-3253.	7.6	392
129	Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019, 13, 13225-13234.	7.3	151
130	Ultrafast Intercalation Enabled by Strong Solvent–Host Interactions: Understanding Solvent Effect at the Atomic Level. Angewandte Chemie, 2019, 131, 17365-17369.	1.6	3
131	Promoting Transport Kinetics in Li-lon Battery with Aligned Porous Electrode Architectures. Nano Letters, 2019, 19, 8255-8261.	4.5	104
132	High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano, 2019, 13, 10612-10621.	7. 3	214
133	A Liquidâ€Metalâ€Enabled Versatile Organic Alkaliâ€Ion Battery. Advanced Materials, 2019, 31, e1806956.	11.1	99
134	Conductive polymers for stretchable supercapacitors. Nano Research, 2019, 12, 1978-1987.	5.8	217
135	A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Letters, 2019, 19, 1143-1150.	4.5	538
136	Nitrogen Reduction Reaction. Small Methods, 2019, 3, 1900070.	4.6	48
137	Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Letters, 2019, 19, 4391-4399.	4.5	115
138	Redox Flow Batteries: Phenothiazineâ€Based Organic Catholyte for Highâ€Capacity and Longâ€Life Aqueous Redox Flow Batteries (Adv. Mater. 24/2019). Advanced Materials, 2019, 31, 1970175.	11.1	3
139	Inorganic Cyanogels and Their Derivatives for Electrochemical Energy Storage and Conversion., 2019, 1, 158-170.		57
140	Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 2019, 10, 6232-6244.	3.7	139
141	Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.	3.3	63
142	Phenothiazineâ∈Based Organic Catholyte for Highâ∈Capacity and Longâ∈Life Aqueous Redox Flow Batteries. Advanced Materials, 2019, 31, e1901052.	11.1	138
143	Triple-Layered Carbon-SiO ₂ Composite Membrane for High Energy Density and Long Cycling Li–S Batteries. ACS Nano, 2019, 13, 5900-5909.	7.3	93
144	A graphite intercalation compound associated with liquid Na–K towards ultra-stable and high-capacity alkali metal anodes. Energy and Environmental Science, 2019, 12, 1989-1998.	15.6	90

#	Article	IF	Citations
145	Understanding aggregation hindered Li-ion transport in transition metal oxide at mesoscale. Energy Storage Materials, 2019, 19, 439-445.	9.5	32
146	Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Letters, 2019, 19, 2530-2536.	4.5	251
147	Biredox Eutectic Electrolytes Derived from Organic Redoxâ€Active Molecules: Highâ€Energy Storage Systems. Angewandte Chemie - International Edition, 2019, 58, 7045-7050.	7.2	82
148	Biredox Eutectic Electrolytes Derived from Organic Redoxâ€Active Molecules: Highâ€Energy Storage Systems. Angewandte Chemie, 2019, 131, 7119-7124.	1.6	19
149	Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends in Chemistry, 2019, 1, 335-348.	4.4	158
150	Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 1998-2004.	4.5	142
151	Simultaneous energy harvesting and storage <i>via</i> solar-driven regenerative electrochemical cycles. Energy and Environmental Science, 2019, 12, 3370-3379.	15.6	55
152	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	15.6	122
153	Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano, 2019, 13, 14368-14376.	7.3	34
154	Conjugated polymers: From synthesis, transport properties, to device applications. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1557-1558.	2.4	14
155	Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. Nature Communications, 2019, 10, 93.	5.8	39
156	Super Moistureâ€Absorbent Gels for Allâ€Weather Atmospheric Water Harvesting. Advanced Materials, 2019, 31, e1806446.	11.1	281
157	Chemically Binding Scaffolded Anodes with 3D Graphene Architectures Realizing Fast and Stable Lithium Storage. Research, 2019, 2019, 8393085.	2.8	26
158	An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 6181-6184.	1.6	149
159	An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 6073-6076.	7.2	568
160	Stretchable Allâ€Gelâ€State Fiberâ€Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials, 2018, 30, e1800124.	11.1	396
161	Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn–Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage. Nano Letters, 2018, 18, 3193-3198.	4.5	113
162	Titelbild: A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte (Angew. Chem. 8/2018). Angewandte Chemie, 2018, 130, 2025-2025.	1.6	1

#	Article	IF	Citations
163	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
164	All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. Nano Letters, 2018, 18, 3322-3327.	4.5	176
165	Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles <i>via</i> Block Copolymers: From Synthesis to Energy Storage Property. ACS Nano, 2018, 12, 820-828.	7.3	62
166	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 2096-2100.	7.2	484
167	Cyanogel-Enabled Homogeneous Sb–Ni–C Ternary Framework Electrodes for Enhanced Sodium Storage. ACS Nano, 2018, 12, 759-767.	7.3	72
168	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€lon Electrolyte. Angewandte Chemie, 2018, 130, 2118-2122.	1.6	34
169	Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 5241-5247.	6.6	461
170	Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13, 489-495.	15.6	1,356
171	Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15, 46-52.	9.5	203
172	Enabling Graphene-Oxide-Based Membranes for Large-Scale Energy Storage by Controlling Hydrophilic Microstructures. CheM, 2018, 4, 1035-1046.	5.8	65
173	Molecular engineering of organic electroactive materials for redox flow batteries. Chemical Society Reviews, 2018, 47, 69-103.	18.7	442
174	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	4.6	201
175	Local Builtâ€In Electric Field Enabled in Carbonâ€Doped Co ₃ O ₄ Nanocrystals for Superior Lithiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1705951.	7.8	128
176	Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702179.	10.2	293
177	Probing enhanced lithium-ion transport kinetics in 2D holey nanoarchitectured electrodes. Nano Futures, 2018, 2, 035008.	1.0	15
178	Heterogeneous Molten Salt Design Strategy toward Coupling Cobalt–Cobalt Oxide and Carbon for Efficient Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1800762.	10.2	51
179	Gradientâ€Distributed Metal–Organic Framework–Based Porous Membranes for Nonaqueous Redox Flow Batteries. Advanced Energy Materials, 2018, 8, 1802533.	10.2	70
180	Highly Concentrated Phthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility. CheM, 2018, 4, 2814-2825.	5.8	105

#	Article	IF	CITATIONS
181	Insights into Hydrotropic Solubilization for Hybrid Ion Redox Flow Batteries. ACS Energy Letters, 2018, 3, 2641-2648.	8.8	54
182	A Selfâ€Healing Roomâ€Temperature Liquidâ€Metal Anode for Alkaliâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1804649.	7.8	147
183	RÃ⅓cktitelbild: An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions (Angew. Chem. 21/2018). Angewandte Chemie, 2018, 130, 6462-6462.	1.6	0
184	Eutectic Electrolytes for High-Energy-Density Redox Flow Batteries. ACS Energy Letters, 2018, 3, 2875-2883.	8.8	95
185	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 10403-10407.	1.6	139
186	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 10246-10250.	7.2	619
187	Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Letters, 2018, 18, 4570-4575.	4.5	232
188	Solar-Powered Redox Cells: Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870229.	11.1	1
189	Engineering Surface Vacancy to Stabilize High-Voltage Battery Cathodes. CheM, 2018, 4, 1486-1487.	5.8	3
190	Significantly Improving Lithium-Ion Transport via Conjugated Anion Intercalation in Inorganic Layered Hosts. ACS Nano, 2018, 12, 8670-8677.	7.3	54
191	Solvent-Dependent Intercalation and Molecular Configurations in Metallocene-Layered Crystal Superlattices. Nano Letters, 2018, 18, 6071-6075.	4.5	19
192	Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Advanced Materials, 2018, 30, e1801796.	11.1	177
193	Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions. Advanced Materials, 2018, 30, e1802294.	11.1	43
194	Single atom catalyst towards ammonia synthesis at mild conditions. Science China Chemistry, 2018, 61, 1045-1046.	4.2	10
195	A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy and Environmental Science, 2018, 11, 1985-1992.	15.6	654
196	Progress and prospects of next-generation redox flow batteries. Energy Storage Materials, 2018, 15, 324-350.	9.5	239
197	Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries. Nano Letters, 2017, 17, 1906-1914.	4.5	131
198	A Conductive Molecular Framework Derived Li ₂ S/N,Pâ€Codoped Carbon Cathode for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602876.	10.2	258

#	Article	IF	CITATIONS
199	Molekülâ€Engineering: das Versprechen umweltvertrÃglicher Redoxâ€Flowâ€Batterien. Angewandte Chemie, 2017, 129, 8738-8740.	1.6	11
200	A Sustainable Redoxâ€Flow Battery with an Aluminumâ€Based, Deepâ€Eutecticâ€Solvent Anolyte. Angewandte Chemie - International Edition, 2017, 56, 7454-7459.	7.2	121
201	Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature Communications, 2017, 8, 15139.	5.8	343
202	Conductive Polymers: A Tunable 3D Nanostructured Conductive Gel Framework Electrode for Highâ€Performance Lithium Ion Batteries (Adv. Mater. 22/2017). Advanced Materials, 2017, 29, .	11.1	1
203	Two-Dimensional Holey Co ₃ O ₄ Nanosheets for High-Rate Alkali-lon Batteries: From Rational Synthesis to in Situ Probing. Nano Letters, 2017, 17, 3907-3913.	4.5	158
204	A Sustainable Redoxâ∈Flow Battery with an Aluminumâ∈Based, Deepâ∈Eutecticâ∈Solvent Anolyte. Angewandte Chemie, 2017, 129, 7562-7567.	1.6	27
205	An Allâ€Stretchableâ€Component Sodiumâ€ion Full Battery. Advanced Materials, 2017, 29, 1700898.	11.1	141
206	The Promise of Environmentally Benign Redox Flow Batteries by Molecular Engineering. Angewandte Chemie - International Edition, 2017, 56, 8614-8616.	7.2	54
207	Microwave-responsive polymeric core–shell microcarriers for high-efficiency controlled drug release. Journal of Materials Chemistry B, 2017, 5, 3541-3549.	2.9	16
208	A Tunable 3D Nanostructured Conductive Gel Framework Electrode for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2017, 29, 1603922.	11.1	175
209	A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents. Joule, 2017, 1, 623-633.	11.7	116
210	Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-lon Batteries. Accounts of Chemical Research, 2017, 50, 2642-2652.	7.6	261
211	Engineering 2D Nanofluidic Li″on Transport Channels for Superior Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1703909.	11.1	97
212	Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2017, 11, 9550-9557.	7.3	273
213	Effective Interlayer Engineering of Two-Dimensional VOPO ₄ Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage. Nano Letters, 2017, 17, 6273-6279.	4.5	102
214	General Facet-Controlled Synthesis of Single-Crystalline {010}-Oriented LiMPO ₄ (M = Mn,) Tj ETQq0	0.0 rgBT	Oyerlock 10
215	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
216	Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Accounts of Chemical Research, 2017, 50, 1734-1743.	7.6	343

#	Article	IF	CITATIONS
217	A high-performance all-metallocene-based, non-aqueous redox flow battery. Energy and Environmental Science, 2017, 10, 491-497.	15.6	189
218	Molecular Engineering Enables Better Organic Flow Batteries. CheM, 2017, 3, 917-919.	5.8	43
219	Conducting Polymer Hydrogels and Their Applications as Electrode Materials. , 2017, , 291-340.		0
220	A Bioâ€Inspired, Heavyâ€Metalâ€Free, Dualâ€Electrolyte Liquid Battery towards Sustainable Energy Storage. Angewandte Chemie - International Edition, 2016, 55, 4772-4776.	7.2	127
221	A Bioâ€Inspired, Heavyâ€Metalâ€Free, Dualâ€Electrolyte Liquid Battery towards Sustainable Energy Storage. Angewandte Chemie, 2016, 128, 4850-4854.	1.6	36
222	Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15205-15215.	4.0	206
223	Understanding the Size-Dependent Sodium Storage Properties of Na ₂ C ₆ O ₆ -Based Organic Electrodes for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3329-3334.	4.5	184
224	Smart Electrolytes: Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices (Adv. Mater. 36/2016). Advanced Materials, 2016, 28, 7810-7810.	11.1	4
225	Self-Assembled Nb ₂ O ₅ Nanosheets for High Energy–High Power Sodium Ion Capacitors. Chemistry of Materials, 2016, 28, 5753-5760.	3.2	254
226	Achieving High-Energy–High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor. Nano Letters, 2016, 16, 5938-5943.	4.5	171
227	Intercalation Pseudocapacitance in Ultrathin VOPO ₄ Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. Nano Letters, 2016, 16, 742-747.	4.5	250
228	Thermoplastic Elastomerâ€Enabled Smart Electrolyte for Thermoresponsive Selfâ€Protection of Electrochemical Energy Storage Devices. Advanced Materials, 2016, 28, 7921-7928.	11,1	112
229	In Situ Reactive Synthesis of Polypyrrole-MnO ₂ Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium–Sulfur Battery. Nano Letters, 2016, 16, 7276-7281.	4.5	271
230	Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study. CheM, 2016, 1, 790-801.	5.8	203
231	Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today, 2016, 11, 738-762.	6.2	144
232	Chemically Integrated Inorganicâ€Graphene Twoâ€Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 2016, 12, 6183-6199.	5.2	126
233	Durability of the Li _{1+<i>></i>} 4) ₃ Solid Electrolyte in Lithium–Sulfur Batteries. ACS Energy Letters, 2016, 1, 1080-1085.	8.8	89
234	Twoâ€Dimensional Materials for Beyondâ€Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1600025.	10.2	533

#	Article	IF	CITATIONS
235	An advanced high-energy sodium ion full battery based on nanostructured Na ₂ Ti ₃ O ₇ /VOPO ₄ layered materials. Energy and Environmental Science, 2016, 9, 3399-3405.	15.6	247
236	Layer-by-Layer Assembly of Two-Dimensional Colloidal Cu ₂ Se Nanoplates and Their Layer-Dependent Conductivity. Chemistry of Materials, 2016, 28, 4307-4314.	3.2	28
237	Innentitelbild: A Bioâ€Inspired, Heavyâ€Metalâ€Free, Dualâ€Electrolyte Liquid Battery towards Sustainable Energy Storage (Angew. Chem. 15/2016). Angewandte Chemie, 2016, 128, 4690-4690.	1.6	0
238	Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversion. Chemistry of Materials, 2016, 28, 2466-2477.	3.2	205
239	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
240	Conductive "Smart―Hybrid Hydrogels with PNIPAM and Nanostructured Conductive Polymers. Advanced Functional Materials, 2015, 25, 1219-1225.	7.8	363
241	A Nanostructured Conductive Hydrogels-Based Biosensor Platform for Human Metabolite Detection. Nano Letters, 2015, 15, 1146-1151.	4.5	352
242	Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. Journal of Materials Chemistry B, 2015, 3, 2920-2930.	2.9	146
243	Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy, 2015, 12, 816-823.	8.2	99
244	Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale, 2015, 7, 12796-12806.	2.8	160
245	Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44, 6684-6696.	18.7	719
246	A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. Nano Letters, 2015, 15, 4108-4113.	4.5	118
247	Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release. Angewandte Chemie - International Edition, 2015, 54, 7376-7380.	7.2	141
248	Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries. Nano Letters, 2015, 15, 7016-7022.	4.5	113
249	Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels. Nano Letters, 2015, 15, 7736-7741.	4.5	227
250	Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy, 2015, 17, 36-42.	8.2	105
251	A Conductive Self-Healing Hybrid Gel Enabled by Metal–Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Letters, 2015, 15, 6276-6281.	4.5	356
252	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	18.7	388

#	Article	IF	CITATIONS
253	Single-Crystalline LiFePO ₄ Nanosheets for High-Rate Li-Ion Batteries. Nano Letters, 2014, 14, 2849-2853.	4.5	308
254	Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 6086-6091.	5.2	624
255	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	5.8	1,225
256	Amorphous silicon honeycombs as a binder/carbon-free, thin-film Li-ion battery anode. Chemical Communications, 2014, 50, 12959-12962.	2.2	15
257	Chemically Integrated Two-Dimensional Hybrid Zinc Manganate/Graphene Nanosheets with Enhanced Lithium Storage Capability. ACS Nano, 2014, 8, 8610-8616.	7.3	141
258	Self-assembled LiFePO4nanowires with high rate capability for Li-ion batteries. Chemical Communications, 2014, 50, 9569.	2.2	52
259	A 3.5 V Lithium–Iodine Hybrid Redox Battery with Vertically Aligned Carbon Nanotube Current Collector. Nano Letters, 2014, 14, 1085-1092.	4.5	136
260	A reversible Br ₂ /Br ^{â^'} redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries. Energy and Environmental Science, 2014, 7, 1990-1995.	15.6	137
261	Multifunctional Superhydrophobic Surfaces Templated From Innately Microstructured Hydrogel Matrix. Nano Letters, 2014, 14, 4803-4809.	4.5	183
262	Sustainable Electrical Energy Storage through the Ferrocene/Ferrocenium Redox Reaction in Aprotic Electrolyte. Angewandte Chemie - International Edition, 2014, 53, 11036-11040.	7.2	133
263	3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy and Environmental Science, 2013, 6, 2856.	15.6	351
264	Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nature Communications, 2013, 4, 2431.	5.8	356
265	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	8.2	976
266	Ultrathin Two-Dimensional MnO ₂ /Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Letters, 2013, 13, 2151-2157.	4.5	818
267	Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano, 2013, 7, 3540-3546.	7.3	699
268	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 2013, 4, 1943.	5.8	1,138
269	Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-lon Battery Anodes. Nano Letters, 2013, 13, 3414-3419.	4.5	295
270	Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy and Environmental Science, 2012, 5, 6862.	15.6	264

#	Article	IF	Citations
271	Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9287-9292.	3.3	1,025
272	The Shear Flow Processing of Controlled DNA Tethering and Stretching for Organic Molecular Electronics. ACS Nano, 2011, 5, 275-282.	7.3	10
273	Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano, 2011, 5, 9187-9193.	7. 3	815
274	Solution-Processed Graphene/MnO ₂ Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters, 2011, 11, 2905-2911.	4.5	1,195
275	Enhancing the Supercapacitor Performance of Graphene/MnO ₂ Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2011, 11, 4438-4442.	4.5	1,062
276	Assembly and integration of semiconductor nanowires for functional nanosystems. Pure and Applied Chemistry, 2010, 82, 2295-2314.	0.9	130
277	Electrical Recording from Hearts with Flexible Nanowire Device Arrays. Nano Letters, 2009, 9, 914-918.	4.5	205
278	Discovery of the Longriba fault zone in eastern Bayan Har block, China and its tectonic implication. Science in China Series D: Earth Sciences, 2008, 51, 1209-1223.	0.9	66
279	Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches. Nano Letters, 2008, 8, 386-391.	4.5	231
280	Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. Journal of Materials Chemistry, 2008, 18, 728.	6.7	95
281	Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotechnology, 2, 372-377.	15.6	492
282	Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449, 885-889.	13.7	2,791
283	Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science, 2006, 313, 1100-1104.	6.0	797
284	Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Science in China Series D: Earth Sciences, 2005, 48, 384.	0.9	95
285	Manipulation and assembly of nanowires with holographic optical traps. Optics Express, 2005, 13, 8906.	1.7	267
286	The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation. Carbon, 2004, 42, 183-185.	5.4	49
287	Sonochemical synthesis of nanocrystalline lead chalcogenides: PbE (E = S, Se, Te). Materials Research Bulletin, 2003, 38, 539-543.	2.7	64
288	Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Communications, 2003, 125, 117-120.	0.9	42

Сиіниа **Y**и

#	Article	IF	CITATIONS
289	Solvo-displacement route to ternary compounds Ag–M–S (M=Ga, Cu or Hg). Inorganic Chemistry Communication, 2003, 6, 555-557.	1.8	5
290	Self-template route to CdS hollow spheres and in situ conversion to CdS/Ag2S composite materials. Journal of Crystal Growth, 2003, 249, 549-552.	0.7	23
291	A solvent-reduction approach to tetrapod-like copper(i) chloride crystallites. Journal of Materials Chemistry, 2003, 13, 424-427.	6.7	13
292	Synthesis of nano-fibrillar bismuth sulfide by a surfactant-assisted approach. Inorganic Chemistry Communication, 2002, 5, 933-936.	1.8	26