
Guihua Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953116/publications.pdf Version: 2024-02-01

Сшнил Ун

#	Article	IF	CITATIONS
1	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
2	Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449, 885-889.	13.7	2,791
3	Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13, 489-495.	15.6	1,356
4	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	5.8	1,225
5	Solution-Processed Graphene/MnO ₂ Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters, 2011, 11, 2905-2911.	4.5	1,195
6	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 2013, 4, 1943.	5.8	1,138
7	Enhancing the Supercapacitor Performance of Graphene/MnO ₂ Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2011, 11, 4438-4442.	4.5	1,062
8	Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9287-9292.	3.3	1,025
9	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	8.2	976
10	Ultrathin Two-Dimensional MnO ₂ /Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Letters, 2013, 13, 2151-2157.	4.5	818
11	Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano, 2011, 5, 9187-9193.	7.3	815
12	Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science, 2006, 313, 1100-1104.	6.0	797
13	Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5, 388-401.	23.3	784
14	Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44, 6684-6696.	18.7	719
15	Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano, 2013, 7, 3540-3546.	7.3	699
16	A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy and Environmental Science, 2018, 11, 1985-1992.	15.6	654
17	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
18	Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 6086-6091.	5.2	624

#	Article	IF	CITATIONS
19	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 10246-10250.	7.2	619
20	Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 2019, 5, eaaw5484.	4.7	600
21	An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 6073-6076.	7.2	568
22	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€Temperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	7.8	560
23	A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Letters, 2019, 19, 1143-1150.	4.5	538
24	Twoâ€Dimensional Materials for Beyond‣ithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1600025.	10.2	533
25	Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotechnology, 2007, 2, 372-377.	15.6	492
26	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 2096-2100.	7.2	484
27	Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 5241-5247.	6.6	461
28	Molecular engineering of organic electroactive materials for redox flow batteries. Chemical Society Reviews, 2018, 47, 69-103.	18.7	442
29	Biomassâ€Derived Hybrid Hydrogel Evaporators for Costâ€Effective Solar Water Purification. Advanced Materials, 2020, 32, e1907061.	11.1	436
30	Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2021, 20, 76-83.	13.3	432
31	Stretchable Allâ€Gelâ€State Fiberâ€Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials, 2018, 30, e1800124.	11.1	396
32	Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research, 2019, 52, 3244-3253.	7.6	392
33	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	18.7	388
34	Conductive "Smart―Hybrid Hydrogels with PNIPAM and Nanostructured Conductive Polymers. Advanced Functional Materials, 2015, 25, 1219-1225.	7.8	363
35	Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nature Communications, 2013, 4, 2431.	5.8	356
36	A Conductive Self-Healing Hybrid Gel Enabled by Metal–Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Letters, 2015, 15, 6276-6281.	4.5	356

#	Article	IF	CITATIONS
37	Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. ACS Nano, 2019, 13, 7913-7919.	7.3	354
38	A Nanostructured Conductive Hydrogels-Based Biosensor Platform for Human Metabolite Detection. Nano Letters, 2015, 15, 1146-1151.	4.5	352
39	3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy and Environmental Science, 2013, 6, 2856.	15.6	351
40	Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature Communications, 2017, 8, 15139.	5.8	343
41	Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Accounts of Chemical Research, 2017, 50, 1734-1743.	7.6	343
42	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
43	Single-Crystalline LiFePO ₄ Nanosheets for High-Rate Li-Ion Batteries. Nano Letters, 2014, 14, 2849-2853.	4.5	308
44	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
45	Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes. Nano Letters, 2013, 13, 3414-3419.	4.5	295
46	Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702179.	10.2	293
47	Super Moistureâ€Absorbent Gels for Allâ€Weather Atmospheric Water Harvesting. Advanced Materials, 2019, 31, e1806446.	11.1	281
48	Atmospheric Water Harvesting: A Review of Material and Structural Designs. , 2020, 2, 671-684.		274
49	Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2017, 11, 9550-9557.	7.3	273
50	In Situ Reactive Synthesis of Polypyrrole-MnO ₂ Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium–Sulfur Battery. Nano Letters, 2016, 16, 7276-7281.	4.5	271
51	Manipulation and assembly of nanowires with holographic optical traps. Optics Express, 2005, 13, 8906.	1.7	267
52	Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy and Environmental Science, 2012, 5, 6862.	15.6	264
53	Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021, 4, 868-876.	11.5	264
54	O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Science Advances, 2020, 6, eaba6586.	4.7	263

#	Article	IF	CITATIONS
55	Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Accounts of Chemical Research, 2017, 50, 2642-2652.	7.6	261
56	A Conductive Molecular Framework Derived Li ₂ S/N,P odoped Carbon Cathode for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602876.	10.2	258
57	Self-Assembled Nb ₂ O ₅ Nanosheets for High Energy–High Power Sodium Ion Capacitors. Chemistry of Materials, 2016, 28, 5753-5760.	3.2	254
58	Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Letters, 2019, 19, 2530-2536.	4.5	251
59	Intercalation Pseudocapacitance in Ultrathin VOPO ₄ Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. Nano Letters, 2016, 16, 742-747.	4.5	250
60	An advanced high-energy sodium ion full battery based on nanostructured Na ₂ Ti ₃ O ₇ /VOPO ₄ layered materials. Energy and Environmental Science, 2016, 9, 3399-3405.	15.6	247
61	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
62	Enhanced Surface Interactions Enable Fast Li ⁺ Conduction in Oxide/Polymer Composite Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 4131-4137.	7.2	242
63	Progress and prospects of next-generation redox flow batteries. Energy Storage Materials, 2018, 15, 324-350.	9.5	239
64	Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy and Environmental Science, 2020, 13, 2087-2095.	15.6	236
65	Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Letters, 2018, 18, 4570-4575.	4.5	232
66	Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches. Nano Letters, 2008, 8, 386-391.	4.5	231
67	Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels. Nano Letters, 2015, 15, 7736-7741.	4.5	227
68	Topology ontrolled Hydration of Polymer Network in Hydrogels for Solarâ€Driven Wastewater Treatment. Advanced Materials, 2020, 32, e2007012.	11.1	225
69	Conductive polymers for stretchable supercapacitors. Nano Research, 2019, 12, 1978-1987.	5.8	217
70	High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano, 2019, 13, 10612-10621.	7.3	214
71	Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 15205-15215.	4.0	206
72	Electrical Recording from Hearts with Flexible Nanowire Device Arrays. Nano Letters, 2009, 9, 914-918.	4.5	205

#	Article	IF	CITATIONS
73	Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversion. Chemistry of Materials, 2016, 28, 2466-2477.	3.2	205
74	Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study. CheM, 2016, 1, 790-801.	5.8	203
75	Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15, 46-52.	9.5	203
76	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	4.6	201
77	A high-performance all-metallocene-based, non-aqueous redox flow battery. Energy and Environmental Science, 2017, 10, 491-497.	15.6	189
78	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	6.6	188
79	Carbon Materials for Solar Water Evaporation and Desalination. Small, 2021, 17, e2007176.	5.2	186
80	Understanding the Size-Dependent Sodium Storage Properties of Na ₂ C ₆ O ₆ -Based Organic Electrodes for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3329-3334.	4.5	184
81	Multifunctional Superhydrophobic Surfaces Templated From Innately Microstructured Hydrogel Matrix. Nano Letters, 2014, 14, 4803-4809.	4.5	183
82	Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Advanced Materials, 2018, 30, e1801796.	11.1	177
83	All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. Nano Letters, 2018, 18, 3322-3327.	4.5	176
84	Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Materials Horizons, 2021, 8, 1795-1804.	6.4	176
85	A Tunable 3D Nanostructured Conductive Gel Framework Electrode for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2017, 29, 1603922.	11.1	175
86	Achieving High-Energy–High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor. Nano Letters, 2016, 16, 5938-5943.	4.5	171
87	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
88	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163
89	Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale, 2015, 7, 12796-12806.	2.8	160
90	Two-Dimensional Holey Co ₃ O ₄ Nanosheets for High-Rate Alkali-Ion Batteries: From Rational Synthesis to in Situ Probing. Nano Letters, 2017, 17, 3907-3913.	4.5	158

#	Article	IF	CITATIONS
91	Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends in Chemistry, 2019, 1, 335-348.	4.4	158
92	Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019, 13, 13225-13234.	7.3	151
93	An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 6181-6184.	1.6	149
94	A Selfâ€Healing Roomâ€Temperature Liquidâ€Metal Anode for Alkaliâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1804649.	7.8	147
95	Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. Journal of Materials Chemistry B, 2015, 3, 2920-2930.	2.9	146
96	Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today, 2016, 11, 738-762.	6.2	144
97	Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Accounts of Chemical Research, 2020, 53, 1648-1659.	7.6	143
98	Multiscale Understanding and Architecture Design of High Energy/Power Lithiumâ€Ion Battery Electrodes. Advanced Energy Materials, 2021, 11, 2000808.	10.2	143
99	Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 1998-2004.	4.5	142
100	Chemically Integrated Two-Dimensional Hybrid Zinc Manganate/Graphene Nanosheets with Enhanced Lithium Storage Capability. ACS Nano, 2014, 8, 8610-8616.	7.3	141
101	Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release. Angewandte Chemie - International Edition, 2015, 54, 7376-7380.	7.2	141
102	An Allâ€Stretchableâ€Component Sodiumâ€ion Full Battery. Advanced Materials, 2017, 29, 1700898.	11.1	141
103	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 10403-10407.	1.6	139
104	Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 2019, 10, 6232-6244.	3.7	139
105	Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nature Communications, 2021, 12, 4519.	5.8	139
106	Phenothiazineâ€Based Organic Catholyte for Highâ€Capacity and Longâ€Life Aqueous Redox Flow Batteries. Advanced Materials, 2019, 31, e1901052.	11.1	138
107	A reversible Br ₂ /Br ^{â^'} redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries. Energy and Environmental Science, 2014, 7, 1990-1995.	15.6	137
108	A 3.5 V Lithium–lodine Hybrid Redox Battery with Vertically Aligned Carbon Nanotube Current Collector. Nano Letters, 2014, 14, 1085-1092.	4.5	136

#	Article	IF	CITATIONS
109	Sustainable Electrical Energy Storage through the Ferrocene/Ferrocenium Redox Reaction in Aprotic Electrolyte. Angewandte Chemie - International Edition, 2014, 53, 11036-11040.	7.2	133
110	Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries. Nano Letters, 2017, 17, 1906-1914.	4.5	131
111	Assembly and integration of semiconductor nanowires for functional nanosystems. Pure and Applied Chemistry, 2010, 82, 2295-2314.	0.9	130
112	Local Builtâ€In Electric Field Enabled in Carbonâ€Doped Co ₃ O ₄ Nanocrystals for Superior Lithiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1705951.	7.8	128
113	A Bioâ€Inspired, Heavyâ€Metalâ€Free, Dualâ€Electrolyte Liquid Battery towards Sustainable Energy Storage. Angewandte Chemie - International Edition, 2016, 55, 4772-4776.	7.2	127
114	Chemically Integrated Inorganicâ€Graphene Twoâ€Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 2016, 12, 6183-6199.	5.2	126
115	Room-temperature liquid metal and alloy systems for energy storage applications. Energy and Environmental Science, 2019, 12, 2605-2619.	15.6	122
116	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	15.6	122
117	A Sustainable Redoxâ€Flow Battery with an Aluminumâ€Based, Deepâ€Eutecticâ€Solvent Anolyte. Angewandte Chemie - International Edition, 2017, 56, 7454-7459.	7.2	121
118	A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. Nano Letters, 2015, 15, 4108-4113.	4.5	118
119	A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents. Joule, 2017, 1, 623-633.	11.7	116
120	Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Letters, 2019, 19, 4391-4399.	4.5	115
121	Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries. Nano Letters, 2015, 15, 7016-7022.	4.5	113
122	Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn–Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage. Nano Letters, 2018, 18, 3193-3198.	4.5	113
123	Thermoplastic Elastomerâ€Enabled Smart Electrolyte for Thermoresponsive Selfâ€Protection of Electrochemical Energy Storage Devices. Advanced Materials, 2016, 28, 7921-7928.	11.1	112
124	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 2022, 16, 8213-8222.	7.3	109
125	Solar Water Evaporation Toward Water Purification and Beyond. , 2021, 3, 1112-1129.		107
126	Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 2022, 34, e2110079.	11.1	106

#	Article	IF	CITATIONS
127	Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy, 2015, 17, 36-42.	8.2	105
128	Highly Concentrated Phthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility. CheM, 2018, 4, 2814-2825.	5.8	105
129	Pathways to Widespread Applications: Development of Redox Flow Batteries Based on New Chemistries. CheM, 2019, 5, 1964-1987.	5.8	105
130	Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation. Advanced Materials, 2021, 33, e2102994.	11.1	105
131	Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures. Nano Letters, 2019, 19, 8255-8261.	4.5	104
132	Effective Interlayer Engineering of Two-Dimensional VOPO ₄ Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage. Nano Letters, 2017, 17, 6273-6279.	4.5	102
133	Roomâ€Temperature Allâ€Liquidâ€Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting. Advanced Materials, 2020, 32, e2002577.	11.1	102
134	Flexible sodium-ion based energy storage devices: Recent progress and challenges. Energy Storage Materials, 2020, 26, 83-104.	9.5	100
135	A Surface‣trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22610-22616.	7.2	100
136	Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy, 2015, 12, 816-823.	8.2	99
137	Probing Enhanced Site Activity of Co–Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis. ACS Energy Letters, 2019, 4, 1793-1802.	8.8	99
138	A Liquidâ€Metalâ€Enabled Versatile Organic Alkaliâ€Ion Battery. Advanced Materials, 2019, 31, e1806956.	11.1	99
139	Engineering 2D Nanofluidic Liâ€lon Transport Channels for Superior Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1703909.	11.1	97
140	Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Science in China Series D: Earth Sciences, 2005, 48, 384.	0.9	95
141	Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. Journal of Materials Chemistry, 2008, 18, 728.	6.7	95
142	Eutectic Electrolytes for High-Energy-Density Redox Flow Batteries. ACS Energy Letters, 2018, 3, 2875-2883.	8.8	95
143	Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS Nano, 2021, 15, 6735-6746.	7.3	95
144	Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	95

#	Article	IF	CITATIONS
145	Triple-Layered Carbon-SiO ₂ Composite Membrane for High Energy Density and Long Cycling Li–S Batteries. ACS Nano, 2019, 13, 5900-5909.	7.3	93
146	Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry, 2022, 6, 524-543.	13.8	93
147	Engineering Hydrogels for Efficient Solar Desalination and Water Purification. Accounts of Materials Research, 2021, 2, 374-384.	5.9	92
148	Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nature Communications, 2022, 13, 2761.	5.8	91
149	A graphite intercalation compound associated with liquid Na–K towards ultra-stable and high-capacity alkali metal anodes. Energy and Environmental Science, 2019, 12, 1989-1998.	15.6	90
150	Gelâ€Derived Amorphous Bismuth–Nickel Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. Angewandte Chemie - International Edition, 2021, 60, 4275-4281.	7.2	90
151	Highâ€Yield and Lowâ€Cost Solar Water Purification via Hydrogelâ€Based Membrane Distillation. Advanced Functional Materials, 2021, 31, 2101036.	7.8	90
152	Durability of the Li _{1+<i>x</i>} Ti _{2–<i>x</i>} Al _{<i>x</i>} (PO ₄) ₃ Solid Electrolyte in Lithium–Sulfur Batteries. ACS Energy Letters, 2016, 1, 1080-1085.	8.8	89
153	From Fundamental Understanding to Engineering Design of Highâ€Performance Thick Electrodes for Scalable Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2101275.	11.1	89
154	Porous Two-dimensional Iron-Cyano Nanosheets for High-rate Electrochemical Nitrate Reduction. ACS Nano, 2022, 16, 1072-1081.	7.3	89
155	Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Materials Today, 2020, 35, 78-86.	8.3	88
156	Boosting Electrocatalytic Ammonia Production through Mimicking "π Back-Donation― CheM, 2020, 6, 2690-2702.	5.8	88
157	Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism. Nano Today, 2020, 32, 100870.	6.2	83
158	Biredox Eutectic Electrolytes Derived from Organic Redoxâ€Active Molecules: Highâ€Energy Storage Systems. Angewandte Chemie - International Edition, 2019, 58, 7045-7050.	7.2	82
159	Super Moisture Absorbent Gels for Sustainable Agriculture via Atmospheric Water Irrigation. , 2020, 2, 1419-1422.		82
160	Redistributing Liâ€lon Flux by Parallelly Aligned Holey Nanosheets for Dendriteâ€Free Li Metal Anodes. Advanced Materials, 2020, 32, e2003920.	11.1	81
161	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006629.	11.1	80
162	Pulverizing Fe ₂ O ₃ Nanoparticles for Developing Fe ₃ C/N odoped Carbon Nanoboxes with Multiple Polysulfide Anchoring and Converting Activity in Li‧ Batteries. Advanced Functional Materials, 2021, 31, 2011249.	7.8	79

#	Article	IF	CITATIONS
163	Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. Advanced Materials, 2020, 32, e2003191.	11.1	78
164	Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nature Communications, 2020, 11, 3843.	5.8	76
165	A Chemistry and Microstructure Perspective on Ionâ€Conducting Membranes for Redox Flow Batteries. Angewandte Chemie - International Edition, 2021, 60, 24770-24798.	7.2	76
166	Single vs double atom catalyst for N ₂ activation in nitrogen reduction reaction: A DFT perspective. EcoMat, 2020, 2, e12014.	6.8	75
167	Janus Conductive/Insulating Microporous Ion-Sieving Membranes for Stable Li–S Batteries. ACS Nano, 2020, 14, 13852-13864.	7.3	74
168	Cyanogel-Enabled Homogeneous Sb–Ni–C Ternary Framework Electrodes for Enhanced Sodium Storage. ACS Nano, 2018, 12, 759-767.	7.3	72
169	Hierarchically Porous C/Fe ₃ C Membranes with Fast Ion-Transporting Channels and Polysulfide-Trapping Networks for High-Areal-Capacity Li–S Batteries. Nano Letters, 2020, 20, 701-708.	4.5	72
170	Gradientâ€Distributed Metal–Organic Framework–Based Porous Membranes for Nonaqueous Redox Flow Batteries. Advanced Energy Materials, 2018, 8, 1802533.	10.2	70
171	Highly Elastic Interconnected Porous Hydrogels through Selfâ€Assembled Templating for Solar Water Purification. Angewandte Chemie - International Edition, 2022, 61, e202114074.	7.2	70
172	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	5.2	69
173	Understanding Thickness-Dependent Transport Kinetics in Nanosheet-Based Battery Electrodes. Chemistry of Materials, 2020, 32, 1684-1692.	3.2	68
174	Next-Generation Liquid Metal Batteries Based on the Chemistry of Fusible Alloys. ACS Central Science, 2020, 6, 1355-1366.	5.3	67
175	Discovery of the Longriba fault zone in eastern Bayan Har block, China and its tectonic implication. Science in China Series D: Earth Sciences, 2008, 51, 1209-1223.	0.9	66
176	Evaporationâ€Induced Vertical Alignment Enabling Directional Ion Transport in a 2Dâ€Nanosheetâ€Based Battery Electrode. Advanced Materials, 2020, 32, e1907941.	11.1	66
177	Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Nano Letters, 2021, 21, 5896-5904.	4.5	66
178	Enabling Graphene-Oxide-Based Membranes for Large-Scale Energy Storage by Controlling Hydrophilic Microstructures. CheM, 2018, 4, 1035-1046.	5.8	65
179	Molecular Engineering of Azobenzeneâ€Based Anolytes Towards Highâ€Capacity Aqueous Redox Flow Batteries. Angewandte Chemie - International Edition, 2020, 59, 22163-22170.	7.2	65
180	Sonochemical synthesis of nanocrystalline lead chalcogenides: PbE (E = S, Se, Te). Materials Research Bulletin, 2003, 38, 539-543.	2.7	64

#	Article	IF	CITATIONS
181	Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Advanced Materials, 2020, 32, e2005763.	11.1	64
182	Inorganic Gel-Derived Metallic Frameworks Enabling High-Performance Silicon Anodes. Nano Letters, 2019, 19, 6292-6298.	4.5	63
183	Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.	3.3	63
184	Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. Journal of the American Chemical Society, 2022, 144, 11444-11455.	6.6	63
185	Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles <i>via</i> Block Copolymers: From Synthesis to Energy Storage Property. ACS Nano, 2018, 12, 820-828.	7.3	62
186	Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Accounts of Chemical Research, 2022, 55, 759-769.	7.6	58
187	Inorganic Cyanogels and Their Derivatives for Electrochemical Energy Storage and Conversion. , 2019, 1, 158-170.		57
188	Simultaneous energy harvesting and storage <i>via</i> solar-driven regenerative electrochemical cycles. Energy and Environmental Science, 2019, 12, 3370-3379.	15.6	55
189	The Promise of Environmentally Benign Redox Flow Batteries by Molecular Engineering. Angewandte Chemie - International Edition, 2017, 56, 8614-8616.	7.2	54
190	Insights into Hydrotropic Solubilization for Hybrid Ion Redox Flow Batteries. ACS Energy Letters, 2018, 3, 2641-2648.	8.8	54
191	Significantly Improving Lithium-Ion Transport via Conjugated Anion Intercalation in Inorganic Layered Hosts. ACS Nano, 2018, 12, 8670-8677.	7.3	54
192	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	11.1	53
193	Self-assembled LiFePO4nanowires with high rate capability for Li-ion batteries. Chemical Communications, 2014, 50, 9569.	2.2	52
194	Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage. ACS Nano, 2022, 16, 4805-4812.	7.3	52
195	Heterogeneous Molten Salt Design Strategy toward Coupling Cobalt–Cobalt Oxide and Carbon for Efficient Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1800762.	10.2	51
196	"Fishnet-like―ion-selective nanochannels in advanced membranes for flow batteries. Journal of Materials Chemistry A, 2019, 7, 21112-21119.	5.2	50
197	Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548.	11.1	50
198	The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation. Carbon, 2004, 42, 183-185.	5.4	49

GUIHUA YU

#	Article	IF	CITATIONS
199	High-performance magnesium metal batteries <i>via</i> switching the passivation film into a solid electrolyte interphase. Energy and Environmental Science, 2021, 14, 4391-4399.	15.6	49
200	Nitrogen Reduction Reaction. Small Methods, 2019, 3, 1900070.	4.6	48
201	Ultrahigh-Capacity and Scalable Architected Battery Electrodes <i>via</i> Tortuosity Modulation. ACS Nano, 2021, 15, 19109-19118.	7.3	48
202	Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodiumâ€lon Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 2020, 4, 1900673.	4.6	47
203	Scalable High-Areal-Capacity Li–S Batteries Enabled by Sandwich-Structured Hierarchically Porous Membranes with Intrinsic Polysulfide Adsorption. Nano Letters, 2020, 20, 6922-6929.	4.5	47
204	Molecular Engineering Enables Better Organic Flow Batteries. CheM, 2017, 3, 917-919.	5.8	43
205	Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions. Advanced Materials, 2018, 30, e1802294.	11.1	43
206	Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Applied Physics Reviews, 2020, 7, .	5.5	43
207	Organic Electrolytes for pHâ€Neutral Aqueous Organic Redox Flow Batteries. Advanced Functional Materials, 2022, 32, 2108777.	7.8	43
208	Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Communications, 2003, 125, 117-120.	0.9	42
209	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendriteâ€Free Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12170-12177.	7.2	41
210	A Ternary Hybrid ation Roomâ€Temperature Liquid Metal Battery and Interfacial Selection Mechanism Study. Advanced Materials, 2020, 32, e2000316.	11.1	40
211	Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. Nature Communications, 2019, 10, 93.	5.8	39
212	Design Principles and Applications of Nextâ€Generation Highâ€Energyâ€Density Batteries Based on Liquid Metals. Advanced Materials, 2021, 33, e2100052.	11.1	38
213	Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528.	4.5	37
214	A Bioâ€Inspired, Heavyâ€Metalâ€Free, Dualâ€Electrolyte Liquid Battery towards Sustainable Energy Storage. Angewandte Chemie, 2016, 128, 4850-4854.	1.6	36
215	A mini review on two-dimensional nanomaterial assembly. Nano Research, 2020, 13, 1179-1190.	5.8	36
216	A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification. Advanced Materials, 2022, 34, e2200865.	11.1	36

#	Article	IF	CITATIONS
217	General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity. , 2019, 1, 265-271.		35
218	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie, 2018, 130, 2118-2122.	1.6	34
219	Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano, 2019, 13, 14368-14376.	7.3	34
220	Multifunctional hydrogels for sustainable energy and environment. Polymer International, 2021, 70, 1425-1432.	1.6	33
221	Understanding aggregation hindered Li-ion transport in transition metal oxide at mesoscale. Energy Storage Materials, 2019, 19, 439-445.	9.5	32
222	Hierarchical Metalâ€Organic Framework Films with Controllable Meso/Macroporosity. Advanced Science, 2020, 7, 2002368.	5.6	32
223	Hybrid Electrolyte Engineering Enables Safe and Wideâ€Temperature Redox Flow Batteries. Angewandte Chemie - International Edition, 2021, 60, 15028-15035.	7.2	32
224	Building Efficient Ion Pathway in Highly Densified Thick Electrodes with High Gravimetric and Volumetric Energy Densities. Nano Letters, 2021, 21, 9339-9346.	4.5	31
225	General Facet-Controlled Synthesis of Single-Crystalline {010}-Oriented LiMPO ₄ (M = Mn,) Tj ETQq1	1,0,7843 3 . 2	14 rgBT /Ove
226	Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Research, 2021, 14, 3562-3575.	5.8	30
227	A General Strategy of Anion-Rich High-Concentration Polymeric Interlayer for High-Voltage, All-Solid-State Batteries. Nano Letters, 2021, 21, 1184-1191.	4.5	29
228	Liquid Alloy Enabled Solid‣tate Batteries for Conformal Electrode–Electrolyte Interfaces. Advanced Functional Materials, 2021, 31, 2010863.	7.8	29
229	Layer-by-Layer Assembly of Two-Dimensional Colloidal Cu ₂ Se Nanoplates and Their Layer-Dependent Conductivity. Chemistry of Materials, 2016, 28, 4307-4314.	3.2	28
230	A Sustainable Redoxâ€Flow Battery with an Aluminumâ€Based, Deepâ€Eutecticâ€Solvent Anolyte. Angewandte Chemie, 2017, 129, 7562-7567.	1.6	27
231	Enhanced Surface Interactions Enable Fast Li ⁺ Conduction in Oxide/Polymer Composite Electrolyte. Angewandte Chemie, 2020, 132, 4160-4166.	1.6	27
232	Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63, 1570-1577.	4.2	27
233	Synthesis of nano-fibrillar bismuth sulfide by a surfactant-assisted approach. Inorganic Chemistry Communication, 2002, 5, 933-936.	1.8	26
234	Chemically Binding Scaffolded Anodes with 3D Graphene Architectures Realizing Fast and Stable Lithium Storage. Research, 2019, 2019, 8393085.	2.8	26

#	Article	IF	CITATIONS
235	General Design Methodology for Organic Eutectic Electrolytes toward Highâ€Energyâ€Density Redox Flow Batteries. Advanced Materials, 2021, 33, e2008560.	11.1	25
236	Hierarchically porous membranes for lithium rechargeable batteries: Recent progress and opportunities. EcoMat, 2022, 4, .	6.8	24
237	Self-template route to CdS hollow spheres and in situ conversion to CdS/Ag2S composite materials. Journal of Crystal Growth, 2003, 249, 549-552.	0.7	23
238	A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie, 2020, 132, 22799-22805.	1.6	23
239	Low-Temperature Multielement Fusible Alloy-Based Molten Sodium Batteries for Grid-Scale Energy Storage. ACS Central Science, 2020, 6, 2287-2293.	5.3	21
240	Polyeutectic-based stable and effective electrolytes for high-performance energy storage systems. Energy and Environmental Science, 2021, 14, 931-939.	15.6	21
241	Polymeric materials for solar water purification. Journal of Polymer Science, 2021, 59, 3084-3099.	2.0	21
242	Materials Innovation for Global Water Sustainability. , 2022, 4, 713-714.		20
243	Solvent-Dependent Intercalation and Molecular Configurations in Metallocene-Layered Crystal Superlattices. Nano Letters, 2018, 18, 6071-6075.	4.5	19
244	Ultrafast Intercalation Enabled by Strong Solvent–Host Interactions: Understanding Solvent Effect at the Atomic Level. Angewandte Chemie - International Edition, 2019, 58, 17205-17209.	7.2	19
245	Biredox Eutectic Electrolytes Derived from Organic Redoxâ€Active Molecules: Highâ€Energy Storage Systems. Angewandte Chemie, 2019, 131, 7119-7124.	1.6	19
246	Molecular Engineering of Azobenzeneâ€Based Anolytes Towards High apacity Aqueous Redox Flow Batteries. Angewandte Chemie, 2020, 132, 22347-22354.	1.6	19
247	Design principles of hydrogen-evolution-suppressing single-atom catalysts for aqueous electrosynthesis. Chem Catalysis, 2022, 2, 1277-1287.	2.9	19
248	Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems. Angewandte Chemie - International Edition, 2021, 60, 4322-4328.	7.2	18
249	Novel Quasi‣iquid Kâ€Na Alloy as a Promising Dendriteâ€Free Anode for Rechargeable Potassium Metal Batteries. Advanced Science, 2021, 8, e2101866.	5.6	18
250	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	2.6	17
251	Microwave-responsive polymeric core–shell microcarriers for high-efficiency controlled drug release. Journal of Materials Chemistry B, 2017, 5, 3541-3549.	2.9	16
252	Optimal electrode-scale design of Li-ion electrodes: A general correlation. Energy Storage Materials, 2021, 39, 176-185.	9.5	16

#	Article	IF	CITATIONS
253	Highly Elastic Interconnected Porous Hydrogels through Selfâ€Assembled Templating for Solar Water Purification. Angewandte Chemie, 2022, 134, e202114074.	1.6	16
254	Amorphous silicon honeycombs as a binder/carbon-free, thin-film Li-ion battery anode. Chemical Communications, 2014, 50, 12959-12962.	2.2	15
255	Probing enhanced lithium-ion transport kinetics in 2D holey nanoarchitectured electrodes. Nano Futures, 2018, 2, 035008.	1.0	15
256	Conjugated polymers: From synthesis, transport properties, to device applications. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1557-1558.	2.4	14
257	Dualâ€Ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	14
258	A solvent-reduction approach to tetrapod-like copper(i) chloride crystallites. Journal of Materials Chemistry, 2003, 13, 424-427.	6.7	13
259	Molekülâ€Engineering: das Versprechen umweltvertrÃǥlicher Redoxâ€Flowâ€Batterien. Angewandte Chemie, 2017, 129, 8738-8740.	1.6	11
260	Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie, 2022, 134, .	1.6	11
261	The Shear Flow Processing of Controlled DNA Tethering and Stretching for Organic Molecular Electronics. ACS Nano, 2011, 5, 275-282.	7.3	10
262	Single atom catalyst towards ammonia synthesis at mild conditions. Science China Chemistry, 2018, 61, 1045-1046.	4.2	10
263	Gelâ€Đerived Amorphous Bismuth–Nickel Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. Angewandte Chemie, 2021, 133, 4321-4327.	1.6	10
264	Dimensionality effect of conductive carbon fillers in LiNi1/3Mn1/3Co1/3O2 cathode. Carbon, 2022, 188, 114-125.	5.4	10
265	Revealing the Solid‣tate Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
266	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendriteâ€Free Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie, 2020, 132, 12268-12275.	1.6	9
267	General Synthesis of Large Inorganic Nanosheets via 2D Confined Assembly of Nanoparticles. ACS Central Science, 2022, 8, 627-635.	5.3	7
268	Understanding Charge Storage in Hydrated Layered Solids MOPO ₄ (M = V, Nb) with Tunable Interlayer Chemistry. ACS Nano, 2020, 14, 13824-13833.	7.3	6
269	Bioâ€Đerived and Costâ€Effective Membranes with High Selectivity for Redox Flow Batteries Based on Host–Guest Chemistry. Small, 2022, 18, e2107055.	5.2	6
270	Solvo-displacement route to ternary compounds Ag–M–S (M=Ga, Cu or Hg). Inorganic Chemistry Communication, 2003, 6, 555-557.	1.8	5

#	Article	IF	CITATIONS
271	Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems. Angewandte Chemie, 2021, 133, 4368-4374.	1.6	5
272	Smart Electrolytes: Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices (Adv. Mater. 36/2016). Advanced Materials, 2016, 28, 7810-7810.	11.1	4
273	Lithiumâ€Ion Batteries: Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€Ion Batteries (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170093.	11.1	4
274	Solar Water Purification: Highâ€Yield and Low ost Solar Water Purification via Hydrogelâ€Based Membrane Distillation (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170135.	7.8	4
275	Transport In and Optimization of Aligned-Channel Li-Ion Electrode Architectures. Journal of the Electrochemical Society, 2021, 168, 100536.	1.3	4
276	Engineering Surface Vacancy to Stabilize High-Voltage Battery Cathodes. CheM, 2018, 4, 1486-1487.	5.8	3
277	Ultrafast Intercalation Enabled by Strong Solvent–Host Interactions: Understanding Solvent Effect at the Atomic Level. Angewandte Chemie, 2019, 131, 17365-17369.	1.6	3
278	Redox Flow Batteries: Phenothiazineâ€Based Organic Catholyte for Highâ€Capacity and Longâ€Life Aqueous Redox Flow Batteries (Adv. Mater. 24/2019). Advanced Materials, 2019, 31, 1970175.	11.1	3
279	When graphite meets Li metal. National Science Review, 2020, 7, 1521-1522.	4.6	3
280	Hybrid Electrolyte Engineering Enables Safe and Wideâ€Temperature Redox Flow Batteries. Angewandte Chemie, 2021, 133, 15155-15162.	1.6	3
281	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie, 2022, 134, .	1.6	3
282	A Chemistry and Microstructure Perspective on Ion onducting Membranes for Redox Flow Batteries. Angewandte Chemie, 2021, 133, 24974.	1.6	2
283	Conductive Polymers: A Tunable 3D Nanostructured Conductive Gel Framework Electrode for Highâ€Performance Lithium Ion Batteries (Adv. Mater. 22/2017). Advanced Materials, 2017, 29, .	11.1	1
284	Titelbild: A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte (Angew. Chem. 8/2018). Angewandte Chemie, 2018, 130, 2025-2025.	1.6	1
285	Solar-Powered Redox Cells: Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870229.	11.1	1
286	Anode Materials: Design Principles and Applications of Nextâ€Generation Highâ€Energyâ€Density Batteries Based on Liquid Metals (Adv. Mater. 29/2021). Advanced Materials, 2021, 33, 2170226.	11.1	1
287	Innentitelbild: A Bioâ€Inspired, Heavyâ€Metalâ€Free, Dualâ€Electrolyte Liquid Battery towards Sustainable Energy Storage (Angew. Chem. 15/2016). Angewandte Chemie, 2016, 128, 4690-4690.	1.6	0
288	Rücktitelbild: An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions (Angew. Chem. 21/2018). Angewandte Chemie, 2018, 130, 6462-6462.	1.6	0

#	Article	IF	CITATIONS
289	Preface: Special topic on electrocatalysis & energy science. Science China Chemistry, 2020, 63, 1515-1516.	4.2	0
290	Rücktitelbild: A Surface‣trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22992-22992.	1.6	0
291	Conducting Polymer Hydrogels and Their Applications as Electrode Materials. , 2017, , 291-340.		0

A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 T