List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952893/publications.pdf Version: 2024-02-01

MINIAFLEE

#	Article	IF	CITATIONS
1	Effects of mTORC1 inhibition on proteasome activity and levels BMB Reports, 2022, , .	2.4	0
2	Effects of mTORC1 inhibition on proteasome activity and levels. BMB Reports, 2022, 55, 161-165.	2.4	3
3	Evaluation of Immunoproteasome-Specific Proteolytic Activity Using Fluorogenic Peptide Substrates. Immune Network, 2022, 22, .	3.6	2
4	CHIP-mediated hyperubiquitylation of tau promotes its self-assembly into the insoluble tau filaments. Chemical Science, 2021, 12, 5599-5610.	7.4	16
5	The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Neurotherapeutics, 2021, 18, 1768-1782.	4.4	5
6	Formation of Non-Nucleoplasmic Proteasome Foci during the Late Stage of Hyperosmotic Stress. Cells, 2021, 10, 2493.	4.1	7
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 9.1) Tf 50 502 T 1,430
8	Concept and application of circulating proteasomes. Experimental and Molecular Medicine, 2021, 53, 1539-1546.	7.7	11
9	Proteasomal adaptations underlying carfilzomib-resistance in human bone marrow plasma cells. American Journal of Transplantation, 2020, 20, 399-410.	4.7	18
10	Ternary Polypeptide Nanoparticles with Improved Encapsulation, Sustained Release, and Enhanced In Vitro Efficacy of Carfilzomib. Pharmaceutical Research, 2020, 37, 213.	3.5	8
11	Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19190-19200.	7.1	50
12	Pentaminomycins C–E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium. Microorganisms, 2020, 8, 1390.	3.6	19
13	Proteasome Activity in the Plasma as a Novel Biomarker in Mild Cognitive Impairment with Chronic Tinnitus. Journal of Alzheimer's Disease, 2020, 78, 195-205.	2.6	9
14	Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin–Proteasome and the Autophagy–Lysosome Systems. Nutrients, 2020, 12, 2597.	4.1	31
15	ATP Kinetically Modulates Pathogenic Tau Fibrillations. ACS Chemical Neuroscience, 2020, 11, 3144-3152.	3.5	17
16	Reduced chronic restraint stress in mice overexpressing hyperactive proteasomes in the forebrain. Molecular Brain, 2020, 13, 4.	2.6	5
17	Negative-feedback coordination between proteasomal activity and autophagic flux. Autophagy, 2019, 15, 726-728.	9.1	16
18	Acidiphilamides A–E, Modified Peptides as Autophagy Inhibitors from an Acidophilic Actinobacterium, <i>Streptacidiphilus rugosus</i> . Journal of Natural Products, 2019, 82, 341-348.	3.0	8

#	Article	IF	CITATIONS
19	Supramolecular Modulation of Structural Polymorphism in Pathogenic αâ€Synuclein Fibrils Using Copper(II) Coordination. Angewandte Chemie, 2018, 130, 3153-3157.	2.0	2
20	Supramolecular Modulation of Structural Polymorphism in Pathogenic αâ€5ynuclein Fibrils Using Copper(II) Coordination. Angewandte Chemie - International Edition, 2018, 57, 3099-3103.	13.8	25
21	Inactivation of USP14 Perturbs Ubiquitin Homeostasis and Delays the Cell Cycle in Mouse Embryonic Fibroblasts and in Fruit Fly Drosophila. Cellular Physiology and Biochemistry, 2018, 47, 67-82.	1.6	6
22	Dual Function of USP14 Deubiquitinase in Cellular Proteasomal Activity and Autophagic Flux. Cell Reports, 2018, 24, 732-743.	6.4	59
23	Peptide nucleic acid (PNA) probeâ€based analysis to detect filaggrin mutations in atopic dermatitis patients. Experimental Dermatology, 2018, 27, 1304-1308.	2.9	5
24	Degradation or aggregation: the ramifications of post-translational modifications on tau. BMB Reports, 2018, 51, 265-273.	2.4	46
25	Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Experimental and Molecular Medicine, 2017, 49, e287-e287.	7.7	25
26	Isolation and Characterization of RNA Aptamers against a Proteasomeâ€Associated Deubiquitylating Enzyme UCH37. ChemBioChem, 2017, 18, 171-175.	2.6	4
27	p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nature Communications, 2017, 8, 102.	12.8	178
28	Autophagy impairment in Parkinson's disease. Essays in Biochemistry, 2017, 61, 711-720.	4.7	125
29	The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded <i>C9ORF72</i> Inhibits the Proteasome. ENeuro, 2017, 4, ENEURO.0249-16.2017.	1.9	62
30	Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nature Communications, 2016, 7, 10963.	12.8	82
31	Inhibitory RNA Aptamers of Tau Oligomerization and Their Neuroprotective Roles against Proteotoxic Stress. Molecular Pharmaceutics, 2016, 13, 2039-2048.	4.6	32
32	The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins. Autophagy, 2016, 12, 2197-2212.	9.1	22
33	Tethered polymer nanoassemblies for sustained carfilzomib release and prolonged suppression of proteasome activity. Therapeutic Delivery, 2016, 7, 665-681.	2.2	10
34	Ablation of Arg-tRNA-protein transferases results in defective neural tube development. BMB Reports, 2016, 49, 443-448.	2.4	8
35	Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity. Scientific Reports, 2015, 5, 10757.	3.3	48
36	Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sensing and Bio-Sensing Research, 2015, 3, 46-52.	4.2	36

#	Article	IF	CITATIONS
37	Pharmacological Modulation of the N-End Rule Pathway and Its Therapeutic Implications. Trends in Pharmacological Sciences, 2015, 36, 782-797.	8.7	23
38	Photo-crosslinkable chitosan hydrogel as a bioadhesive for esophageal stents. Macromolecular Research, 2015, 23, 882-884.	2.4	2
39	Direct cellular delivery of human proteasomes to delay tau aggregation. Nature Communications, 2014, 5, 5633.	12.8	84
40	Targeting Estrogen Receptors for the Treatment of Alzheimer's Disease. Molecular Neurobiology, 2014, 49, 39-49.	4.0	41
41	A Neurostimulant para-Chloroamphetamine Inhibits the Arginylation Branch of the N-end Rule Pathway. Scientific Reports, 2014, 4, 6344.	3.3	20
42	Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis, 2013, 2, e64-e64.	4.9	90
43	A New Helicase Assay Based on Graphene Oxide for Anti-Viral Drug Development. Molecules and Cells, 2013, 35, 269-273.	2.6	17
44	Tau degradation: The ubiquitin–proteasome system versus the autophagy-lysosome system. Progress in Neurobiology, 2013, 105, 49-59.	5.7	280
45	Characterization of mammalian N-degrons and development of heterovalent inhibitors of the N-end rule pathway. Chemical Science, 2013, 4, 3339.	7.4	10
46	Development and Characterization of Monomeric N-End Rule Inhibitors through <i>In Vitro</i> Model Substrates. Journal of Medicinal Chemistry, 2013, 56, 2540-2546.	6.4	13
47	Salinosporamides A and B Inhibit Proteasome Activity and Delay the Degradation of N-end Rule Model Substrates. Bulletin of the Korean Chemical Society, 2013, 34, 1425-1428.	1.9	0
48	Characterization of Arginylation Branch of N-end Rule Pathway in G-protein-mediated Proliferation and Signaling of Cardiomyocytes. Journal of Biological Chemistry, 2012, 287, 24043-24052.	3.4	45
49	Local Crystallization of Noncrystallized <scp><scp>PbTiO</scp></scp> ₃ Thin Film by a Heated Atomic Force Microscope Tip. Journal of the American Ceramic Society, 2012, 95, 1511-1513.	3.8	1
50	Hyperbranched Double Hydrophilic Block Copolymer Micelles of Poly(ethylene oxide) and Polyglycerol for pH-Responsive Drug Delivery. Biomacromolecules, 2012, 13, 1190-1196.	5.4	126
51	Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chemical Communications, 2012, 48, 3745.	4.1	89
52	Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling. Archives of Pharmacal Research, 2012, 35, 397-407.	6.3	27
53	UBR2 of the N-End Rule Pathway Is Required for Chromosome Stability via Histone Ubiquitylation in Spermatocytes and Somatic Cells. PLoS ONE, 2012, 7, e37414.	2.5	32
54	Liposome-Mediated Cancer Gene Therapy: Clinical Trials and their Lessons to Stem Cell Therapy. Bulletin of the Korean Chemical Society, 2012, 33, 433-442.	1.9	13

#	Article	IF	CITATIONS
55	An asymmetric interface between the regulatory and core particles of the proteasome. Nature Structural and Molecular Biology, 2011, 18, 1259-1267.	8.2	75
56	Trimming of Ubiquitin Chains by Proteasome-associated Deubiquitinating Enzymes. Molecular and Cellular Proteomics, 2011, 10, R110.003871.	3.8	205
57	Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 2010, 467, 179-184.	27.8	795
58	UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1912-1917.	7.1	76
59	A Novel Role for the Dioxin Receptor in Fatty Acid Metabolism and Hepatic Steatosis. Gastroenterology, 2010, 139, 653-663.	1.3	228
60	Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 100-105.	7.1	70
61	Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6212-6217.	7.1	79
62	RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15030-15035.	7.1	219
63	A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons. Molecular and Cellular Biology, 2005, 25, 7120-7136.	2.3	293
64	Optimal salt concentration of vehicle for plasmid DNA enhances gene transfer mediated by electroporation. Experimental and Molecular Medicine, 2002, 34, 265-272.	7.7	44
65	Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model. Gene Therapy, 2002, 9, 859-866.	4.5	43
66	Cationic Hyperbranched Poly(amino ester):Â A Novel Class of DNA Condensing Molecule with Cationic Surface, Biodegradable Three-Dimensional Structure, and Tertiary Amine Groups in the Interior. Journal of the American Chemical Society, 2001, 123, 2460-2461.	13.7	151
67	Intracardiac Echocardiographic Guidance and Monitoring during Percutaneous Endomyocardial Gene Injection in Porcine Heart. Human Gene Therapy, 2001, 12, 893-903.	2.7	23