Dinesh Mohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952247/publications.pdf

Version: 2024-02-01

189 37,251 76 179
papers citations h-index g-index

195 195 195 195 31475

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Pyrolysis of Wood/Biomass for Bio-oil:  A Critical Review. Energy & Fuels, 2006, 20, 848-889.	5.1	4,483
2	Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99, 19-33.	8.2	3,175
3	Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 2007, 142, 1-53.	12.4	2,956
4	Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 2014, 160, 191-202.	9.6	1,736
5	Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 2006, 137, 762-811.	12.4	1,482
6	Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 2019, 119, 3510-3673.	47.7	1,427
7	Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) $\hat{a}\in$ "a case study. Water Research, 2004, 38, 3980-3992.	11.3	1,239
8	Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 2012, 118, 536-544.	9.6	988
9	Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasseâ€"an agricultural waste. Water Research, 2002, 36, 2304-2318.	11.3	971
10	Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet, The, 2009, 374, 1930-1943.	13.7	856
11	Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 2007, 310, 57-73.	9.4	820
12	Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 2016, 468, 334-346.	9.4	554
13	Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 2005, 312, 14-27.	5.4	541
14	Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 2011, 188, 319-333.	12.4	454
15	Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 2014, 236, 513-528.	12.7	446
16	Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology, 2017, 246, 150-159.	9.6	440
17	Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 1998, 17, 517-522.	7.4	423
18	Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy & Samp; Fuels, 2008, 22, 614-625.	5.1	393

#	Article	IF	CITATIONS
19	Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere, 2004, 55, 227-255.	8.2	379
20	Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials, 2006, 135, 280-295.	12.4	370
21	Land use, transport, and population health: estimating the health benefits of compact cities. Lancet, The, 2016, 388, 2925-2935.	13.7	369
22	Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. Journal of Colloid and Interface Science, 2003, 265, 257-264.	9.4	334
23	Removal of Hexavalent Chromium from Aqueous Solution Using Low-Cost Activated Carbons Derived from Agricultural Waste Materials and Activated Carbon Fabric Cloth. Industrial & Engineering Chemistry Research, 2005, 44, 1027-1042.	3.7	332
24	Removal of Dyes from Wastewater Using Flyash, a Low-Cost Adsorbentâ€. Industrial & Discrete Regineering Chemistry Research, 2002, 41, 3688-3695.	3.7	321
25	Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 2015, 442, 120-132.	9.4	305
26	Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. Journal of Colloid and Interface Science, 2006, 297, 489-504.	9.4	299
27	Color Removal from Wastewater Using Low-Cost Activated Carbon Derived from Agricultural Waste Material. Industrial & Engineering Chemistry Research, 2003, 42, 1965-1976.	3.7	296
28	Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal, 2015, 265, 219-227.	12.7	291
29	Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal, 2011, 172, 1111-1125.	12.7	289
30	Removal of Basic Dyes (Rhodamine B and Methylene Blue) from Aqueous Solutions Using Bagasse Fly Ash. Separation Science and Technology, 2000, 35, 2097-2113.	2.5	279
31	Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 2014, 166, 303-308.	9.6	279
32	Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal, 2012, 198-199, 236-245.	12.7	266
33	Process Development for the Removal of Zinc and Cadmium from Wastewater Using Slagâ€"A Blast Furnace Waste Material. Separation Science and Technology, 1997, 32, 2883-2912.	2.5	228
34	Wastewater treatment using low cost activated carbons derived from agricultural byproductsâ€"A case study. Journal of Hazardous Materials, 2008, 152, 1045-1053.	12.4	222
35	Equilibrium Uptake, Sorption Dynamics, Process Optimization, and Column Operations for the Removal and Recovery of Malachite Green from Wastewater Using Activated Carbon and Activated Slag. Industrial & Department of the Removal & Department & De	3.7	220
36	Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 2009, 162, 1514-1521.	12.4	217

#	Article	IF	Citations
37	Engineered biochar – A sustainable solution for the removal of antibiotics from water. Chemical Engineering Journal, 2021, 405, 126926.	12.7	212
38	Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol andp-nitrophenol from wastewater. Journal of Chemical Technology and Biotechnology, 1998, 71, 180-186.	3.2	210
39	Fluoride Removal from Water using Bio-Char, a Green Waste, Low-Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. Industrial & Engineering Chemistry Research, 2012, 51, 900-914.	3.7	201
40	Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource Technology, 2018, 263, 258-265.	9.6	195
41	Removal of Lead and Chromium by Activated Slagâ€"A Blast-Furnace Waste. Journal of Environmental Engineering, ASCE, 1997, 123, 461-468.	1.4	187
42	Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent. Journal of Hazardous Materials, 2006, 137, 1545-1553.	12.4	180
43	Title is missing!. The Environmentalist, 1998, 19, 129-136.	0.7	171
44	Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 2016, 150, 781-789.	8.2	169
45	Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal, 2018, 331, 480-491.	12.7	169
46	>Removal of Lead from Wastewater Using Bagasse Fly Ashâ€"A Sugar Industry Waste Material. Separation Science and Technology, 1998, 33, 1331-1343.	2.5	164
47	Road safety in less-motorized environments: future concerns. International Journal of Epidemiology, 2002, 31, 527-532.	1.9	162
48	Lead and Chromium Adsorption from Water using L-Cysteine Functionalized Magnetite (Fe3O4) Nanoparticles. Scientific Reports, 2017, 7, 7672.	3.3	157
49	Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Advances, 2018, 8, 508-520.	3.6	156
50	Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. Journal of Environmental Management, 2019, 250, 109429.	7.8	145
51	Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, 2005, 550, 82-91.	5.4	141
52	Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. Chemical Engineering Journal, 2014, 247, 250-257.	12.7	130
53	Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science, 2015, 448, 238-250.	9.4	130
54	Lead (Pb $2+$) and copper (Cu $2+$) remediation from water using superparamagnetic maghemite (\hat{I}^3 -Fe 2 O 3) Tj I 2017 , 492 , 176 - 190 .	ETQq0 0 0 9.4) rgBT /Overloo 128

2017, 492, 176-190.

#	Article	IF	Citations
55	Arsenate adsorption on three types of granular schwertmannite. Water Research, 2013, 47, 2938-2948.	11.3	126
56	The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 2020, 42, 2495-2518.	3.4	125
57	Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials. Carbon, 2004, 42, 2409-2421.	10.3	118
58	Status of Heavy Metals in Water and Bed Sediments of River Gomti – A Tributary of the Ganga River, India. Environmental Monitoring and Assessment, 2005, 105, 43-67.	2.7	117
59	Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 2014, 73, 798-808.	3.6	117
60	A review of fluoride in african groundwater and local remediation methods. Groundwater for Sustainable Development, 2016, 2-3, 190-212.	4.6	117
61	Single, binary, and multicomponent sorption of iron and manganese on lignite. Journal of Colloid and Interface Science, 2006, 299, 76-87.	9.4	116
62	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 2019, 694, 133427.	8.0	113
63	Fe ₃ O ₄ Nanoparticles Dispersed on Douglas Fir Biochar for Phosphate Sorption. ACS Applied Nano Materials, 2019, 2, 3467-3479.	5.0	111
64	Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. Environmental Research, 2019, 169, 434-444.	7.5	111
65	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. Environment International, 2019, 127, 52-69.	10.0	101
66	Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. Chemical Engineering Journal, 2015, 270, 205-214.	12.7	98
67	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Science of the Total Environment, 2021, 780, 146274.	8.0	97
68	Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere, 2017, 174, 49-57.	8.2	96
69	Characterization of Bio-oils Produced from Fast Pyrolysis of Corn Stalks in an Auger Reactor. Energy &	5.1	94
70	Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environmental Science and Pollution Research, 2013, 20, 8364-8373.	5.3	92
71	Chemometric data analysis of pollutants in wastewater—a case study. Analytica Chimica Acta, 2005, 532, 15-25.	5.4	86
72	Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal. ACS Applied Materials & Interfaces, 2020, 12, 9248-9260.	8.0	84

#	Article	IF	Citations
73	Removal of Fluoride from Aqueous Solutions by Eichhornia crassipes Biomass and Its Carbonized Form. Industrial & Engineering Chemistry Research, 2003, 42, 6911-6918.	3.7	83
74	Evaluation of Groundwater Quality in Northern Indo-Gangetic Alluvium Region. Environmental Monitoring and Assessment, 2006, 112, 211-230.	2.7	80
75	Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of Environmental Chemical Engineering, 2016, 4, 4237-4247.	6.7	80
76	High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar. Journal of Colloid and Interface Science, 2021, 597, 182-195.	9.4	78
77	Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environmental Science and Pollution Research, 2017, 24, 4577-4590.	5.3	77
78	Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches. Journal of Hydrology, 2014, 511, 254-266.	5.4	76
79	Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India. Environmental Monitoring and Assessment, 2012, 184, 4473-4488.	2.7	75
80	Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. Environmental Research, 2021, 201, 111218.	7.5	72
81	Lead (Pb ²⁺) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. RSC Advances, 2018, 8, 25368-25377.	3.6	71
82	Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. Carbon, 2005, 43, 1680-1693.	10.3	70
83	Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks. Energy & Energ	5.1	68
84	Re-fueling road transport for better air quality in India. Energy Policy, 2014, 68, 556-561.	8.8	67
85	Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus) Tj ETQq1 1 0.78	4314 rgBT 12.4	/Overlock
86	Benchmarking vehicle and passenger travel characteristics in Delhi for on-road emissions analysis. Travel Behaviour & Society, 2015, 2, 88-101.	5.0	64
87	Urban traffic safety assessment: A case study of six Indian cities. IATSS Research, 2016, 39, 95-101.	3.4	64
88	Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide–Biochar Nanocomposite Adsorbents—A Mechanistic Study. ACS Omega, 2020, 5, 2575-2593.	3.5	64
89	Studies on defluoridation of water by coal-based sorbents. Journal of Chemical Technology and Biotechnology, 2001, 76, 717-722.	3.2	63
90	Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere, 2008, 71, 456-465.	8.2	61

#	Article	IF	Citations
91	An analysis of road traffic fatalities in Delhi, India. Accident Analysis and Prevention, 1985, 17, 33-45.	5 . 7	59
92	Distribution of Persistent Organochlorine Pesticide Residues in Gomti River, India. Bulletin of Environmental Contamination and Toxicology, 2005, 74, 146-154.	2.7	58
93	Multispecies QSAR Modeling for Predicting the Aquatic Toxicity of Diverse Organic Chemicals for Regulatory Toxicology. Chemical Research in Toxicology, 2014, 27, 741-753.	3.3	58
94	Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere, 2020, 242, 125255.	8.2	58
95	Vapor-Phase Adsorption of Hexane and Benzene on Activated Carbon Fabric Cloth:  Equilibria and Rate Studies. Industrial & Engineering Chemistry Research, 2002, 41, 2480-2486.	3.7	57
96	Design of safer agricultural equipment: Application of ergonomics and epidemiology. International Journal of Industrial Ergonomics, 1992, 10, 301-309.	2.6	53
97	Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. Science of the Total Environment, 2021, 765, 142698.	8.0	53
98	Process Development for Removal of Substituted Phenol by Carbonaceous Adsorbent Obtained from Fertilizer Waste. Journal of Environmental Engineering, ASCE, 1997, 123, 842-851.	1.4	52
99	Studies on the interaction of some azo dyes (naphthol red-J and direct orange) with nontronite mineral. Journal of Colloid and Interface Science, 2006, 298, 79-86.	9.4	51
100	Kinetic parameters for the removal of lead and chromium from wastewater using activated carbon developed from fertilizer waste material. Environmental Modeling and Assessment, 1996, 1, 281-290.	2.2	50
101	Environmental pollution of soil with PAHs in energy producing plants zone. Science of the Total Environment, 2019, 655, 232-241.	8.0	50
102	Farm hand tools injuries: A case study from northern India. Safety Science, 2008, 46, 54-65.	4.9	48
103	Official government statistics of road traffic deaths in India under-represent pedestrians and motorised two wheeler riders. Injury Prevention, 2017, 23, 1-7.	2.4	48
104	Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Advances, 2017, 7, 8606-8624.	3.6	47
105	Heterogeneous persulfate activation by nano-sized Mn3O4 to degrade furfural from wastewater. Journal of Molecular Liquids, 2020, 298, 112088.	4.9	47
106	Persistent Organochlorine Pesticide Residues in Alluvial Groundwater Aquifers of Gangetic Plains, India. Bulletin of Environmental Contamination and Toxicology, 2005, 74, 162-169.	2.7	45
107	Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environmental Science and Pollution Research, 2017, 24, 22755-22763.	5.3	45
108	Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biochar Chemosphere, 2019, 225, 943-953.	8.2	45

#	Article	IF	CITATIONS
109	Assessment of motor vehicle use characteristics in three Indian cities. Transportation Research, Part D: Transport and Environment, 2016, 44, 254-265.	6.8	41
110	Evaluation of Odd–Even Day Traffic Restriction Experiments in Delhi, India. Transportation Research Record, 2017, 2627, 9-16.	1.9	41
111	Sustainable transport and the modernisation of urban transport in Delhi and Stockholm. Cities, 2010, 27, 421-429.	5.6	40
112	Distribution of Polycyclic Aromatic Hydrocarbons in Gomti River System, India. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 1211-8.	2.7	39
113	Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chemical Speciation and Bioavailability, 2016, 28, 110-118.	2.0	39
114	Aqueous carbofuran removal using slow pyrolyzed sugarcane bagasse biochar: equilibrium and fixed-bed studies. RSC Advances, 2019, 9, 26338-26350.	3.6	39
115	Batch and Continuous Fixed-Bed Lead Removal Using Himalayan Pine Needle Biochar: Isotherm and Kinetic Studies. ACS Omega, 2020, 5, 16366-16378.	3.5	39
116	Removal of 2-Aminophenol Using Novel Adsorbents. Industrial & Engineering Chemistry Research, 2006, 45, 1113-1122.	3.7	38
117	Antimonate removal from water using hierarchical macro-/mesoporous amorphous alumina. Chemical Engineering Journal, 2015, 264, 617-624.	12.7	37
118	Simplified Batch and Fixed-Bed Design System for Efficient and Sustainable Fluoride Removal from Water Using Slow Pyrolyzed Okra Stem and Black Gram Straw Biochars. ACS Omega, 2019, 4, 19513-19525.	3.5	37
119	Sustainable development of coconut shell activated carbon (CSAC) & amp; a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. RSC Advances, 2016, 6, 85390-85410.	3.6	36
120	Waste sludge derived adsorbents for arsenate removal from water. Chemosphere, 2020, 239, 124832.	8.2	34
121	Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: review. Environmental Chemistry Letters, 2021, 19, 3075-3114.	16.2	34
122	Removal of α-Picoline, β-Picoline, and γ-Picoline from Synthetic Wastewater Using Low Cost Activated Carbons Derived from Coconut Shell Fibers. Environmental Science & Environmental Science, 2005, 39, 5076-5086.	10.0	33
123	The care and transport of trauma victims by layperson emergency medical systems: a qualitative study in Delhi, India. BMJ Global Health, 2019, 4, e001963.	4.7	33
124	An improved motorcycle helmet design for tropical climates. Applied Ergonomics, 1993, 24, 427-431.	3.1	32
125	Two-wheeler injuries in Delhi, India: A study of crash victims hospitalized in a neuro-surgery ward. Accident Analysis and Prevention, 1984, 16, 407-416.	5.7	31
126	QSTR Modeling for Qualitative and Quantitative Toxicity Predictions of Diverse Chemical Pesticides in Honey Bee for Regulatory Purposes. Chemical Research in Toxicology, 2014, 27, 1504-1515.	3.3	31

#	Article	IF	Citations
127	Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. RSC Advances, 2016, 6, 112988-112999.	3.6	29
128	Particulate and gaseous emissions in two coastal citiesâ€"Chennai and Vishakhapatnam, India. Air Quality, Atmosphere and Health, 2015, 8, 559-572.	3.3	28
129	Synthesis of I -cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. Environmental Nanotechnology, Monitoring and Management, 2017, 7, 34-45.	2.9	28
130	Urban street structure and traffic safety. Journal of Safety Research, 2017, 62, 63-71.	3.6	28
131	Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. Journal of Colloid and Interface Science, 2021, 587, 767-779.	9.4	28
132	Studies on tractor related injuries in Northern India. Accident Analysis and Prevention, 1998, 30, 53-60.	5.7	26
133	Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. Journal of Hazardous Materials, 2018, 353, 340-347.	12.4	26
134	Major ion chemistry of the ground water at the Khoda Village, Ghaziabad, India. Sustainability of Water Quality and Ecology, 2014, 3-4, 133-150.	2.0	25
135	Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches. Environmental Science and Pollution Research, 2016, 23, 14034-14046.	5.3	24
136	Road traffic injuries: a stocktaking. Best Practice and Research in Clinical Rheumatology, 2008, 22, 725-739.	3.3	23
137	How much would low- and middle-income countries benefit from addressing the key risk factors of road traffic injuries?. International Journal of Injury Control and Safety Promotion, 2020, 27, 83-90.	2.0	23
138	Development of grain threshers based on ergonomic design criteria. Applied Ergonomics, 2002, 33, 503-508.	3.1	22
139	Investigating the association between population density and travel patterns in Indian cities—An analysis of 2011 census data. Cities, 2020, 100, 102656.	5.6	22
140	Reply to the comments on HAZMAT 142 (2007) 1–53 â€~Arsenic removal from water/wastewater using adsorbents – A critical review' by D. Mohan and C.U. Pittman Jr. made by Zhenze Li et al. [HAZMAT 175 (2010) 1116–1117]. Journal of Hazardous Materials, 2011, 185, 1614-1617.	12.4	21
141	Adsorbents for real-scale water remediation: Gaps and the road forward. Journal of Environmental Chemical Engineering, 2021, 9, 105380.	6.7	21
142	Development of safer fodder-cutter machines: a case study from north India. Safety Science, 2004, 42, 43-55.	4.9	18
143	Future of road safety and SDG 3.6 goals in six Indian cities. IATSS Research, 2021, 45, 12-18.	3.4	18
144	Interaction of 2,4-dinitrophenol and 2,4,6-trinitrophenol with copper, zinc, molybdenum and chromium ferrocyanides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 131, 89-93.	4.7	17

#	Article	IF	Citations
145	Childhood injuries in rural north India. International Journal of Injury Control and Safety Promotion, 2010, 17, 45-52.	2.0	17
146	Mental illness and injuries: emerging health challenges of urbanisation in South Asia. BMJ: British Medical Journal, 2017, 357, j1126.	2.3	16
147	Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with position preference. Journal of Modern Transportation, 2017, 25, 163-177.	2.5	16
148	Exploring groundwater hydrochemistry of alluvial aquifers using multi-way modeling. Analytica Chimica Acta, 2007, 596, 171-182.	5.4	15
149	Safer Truck Front Design for Pedestrian Impacts*. Traffic Injury Prevention, 2000, 2, 33-43.	0.5	13
150	Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods. SAR and QSAR in Environmental Research, 2016, 27, 539-558.	2.2	13
151	Water as key to the sustainable development goals of South Sudan – A water quality assessment of Eastern Equatoria State. Groundwater for Sustainable Development, 2019, 8, 255-270.	4.6	13
152	Removal of antimonate and antimonite from water by schwertmannite granules. Desalination and Water Treatment, 2016, 57, 25639-25652.	1.0	12
153	Traffic safety: Rights and obligations. Accident Analysis and Prevention, 2019, 128, 159-163.	5.7	12
154	Traffic safety and city structure: lessons for the future. Salud Publica De Mexico, 2008, 50, S93-100.	0.4	12
155	The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water. Chemosphere, 2017, 185, 926-933.	8.2	11
156	Effects of Surface Iron Hydroxyl Group Site Densities on Arsenate Adsorption by Iron Oxide Nanocomposites. Nanoscience and Nanotechnology Letters, 2016, 8, 1020-1027.	0.4	11
157	Nanoscale zero-valent iron for aqueous lead removal. Advanced Materials Proceedings, 2021, 2, 235-241.	0.2	11
158	Chemometrics assisted spectrophotometric determination of pyridine in water and wastewater. Analytica Chimica Acta, 2008, 630, 10-18.	5.4	10
159	Synthesis and Kinetic Study of Thermal Cycloimidization of Novel Poly(Amide Amic Acid) to Poly(Amide) Tj ETQq1	1,0,78431 1.0	4.rgBT /Ov
160	A Review of Cellular Automata Model for Heterogeneous Traffic Conditions., 2015,, 471-478.		10
161	Safety of young children on motorized two-wheelers around the world: A review of the global epidemiological evidence. IATSS Research, 2015, 38, 83-91.	3.4	9
162	Analysis of Pedestrian Movement on Delhi Roads by Using Naturalistic Observation Techniques. Transportation Research Record, 2017, 2634, 95-100.	1.9	9

#	Article	IF	CITATIONS
163	Preventing motor vehicle crash injuries and deaths: science vs. folklore lessons from history. International Journal of Injury Control and Safety Promotion, 2020, 27, 3-11.	2.0	9
164	Inter-moieties reactivity correlations: an approach to estimate the reactivity endpoints of major atmospheric reactants towards organic chemicals. RSC Advances, 2016, 6, 50297-50305.	3.6	8
165	What can we learn from the historic road safety performance of high-income countries?. International Journal of Injury Control and Safety Promotion, 2020, 27, 27-34.	2.0	7
166	Safety of motorized two-wheeler riders in the formal and informal transport sector. International Journal of Injury Control and Safety Promotion, 2020, 27, 51-60.	2.0	7
167	Intrusion of heavy metals/metalloids into rice (Oryza sativa L.) in relation to their status in two different agricultural management systems in Sri Lanka. Groundwater for Sustainable Development, 2021, 14, 100619.	4.6	7
168	A property-performance correlation and mass transfer study of As(v) adsorption on three mesoporous aluminas. RSC Advances, 2016, 6, 80630-80639.	3.6	6
169	Sources, spatio-temporal distribution and depth variations in groundwater salinity of the semi-arid Rohtak district, Haryana, India. Groundwater for Sustainable Development, 2022, 18, 100790.	4.6	6
170	Biochar adsorption system designs. , 2022, , 153-203.		5
171	Synthesis, characterization, and investigation of structure-thermal cycloimidization relationship of novel poly(amide amic acid)s to poly(amide imide)s by thermogravimetric analysis. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2937-2947.	2.1	4
172	Preparation of Activated and Non-Activated Carbon from Conocarpus Pruning Waste as Low-Cost Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution. BioResources, 2015, 11, .	1.0	4
173	Why do three-wheelers carrying schoolchildren suffer very low fatal crashes?. IATSS Research, 2015, 38, 130-134.	3.4	4
174	Can â€ ⁻ biodegradabilityâ€ ⁻ of adsorbents constitute an â€ ⁻ Achillesâ€ ⁻ heelâ€ ⁻ in real-world water purification? Perspectives and opportunities. Journal of Environmental Chemical Engineering, 2022, 10, 107321.	6.7	4
175	Nanobiochar: A sustainable solution for agricultural and environmental applications., 2021,, 501-519.		3
176	Sorptive removal of pharmaceuticals using sustainable biochars. , 2022, , 395-427.		3
177	Reply to "Comment on the Removal Mechanism of Hexavalent Chromium by Biomaterials or Biomaterial-Based Activated Carbons―(Comment on "Removal of Hexavalent Chromium from Aqueous) Tj ET	Qq1 1 0.7	/84314 rgB
178	662â€Motorcycle helmet and car seat belt use patterns in Delhi, India: implications for traffic safety interventions. Injury Prevention, 2016, 22, A237.3-A238.	2.4	2
179	Dealing with existing theory: national fatality rates, vehicle standards and personal safety. International Journal of Injury Control and Safety Promotion, 2020, 27, 12-19.	2.0	2
180	Recent Developments in Aqueous Arsenic(III) Remediation Using Biomass-Based Adsorbents. ACS Symposium Series, 2020, , 197-251.	0.5	2

#	Article	IF	CITATIONS
181	Understanding the Road Safety Performance of OECD Countries. , 2016, , 1-15.		2
182	Shape Memory Adsorbents for Water Remediation: Recent Progress, Associated Hydrodynamics, and Research Needs. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
183	Nanobiochar for aqueous contaminant removal. , 2022, , 667-704.		2
184	Biochar and biochar composites for poly- and perfluoroalkyl substances (PFAS) sorption. , 2022, , 555-595.		1
185	Biochar and biochar composites for oil sorption. , 2022, , 527-554.		1
186	Particle Diameter and Nutrient Related Studies of Anaerobic Biodegradation of Lignocellulose from Corn Stalks in Biogas Production for Sustainable Energy Development. International Journal of Chemistry, $2013, 5, .$	0.3	0
187	858â€Automobile manufacturers, advertising and traffic safety: case study from India. Injury Prevention, 2016, 22, A306.1-A306.	2.4	0
188	Sustainable Biochar - A Tool for Climate Change Mitigation, Soil Management and Water and Wastewater Treatment., 2016,, 949-952.		0
189	Arsenic removal from household drinking water by biochar and biochar composites: A focus on scale-up., 2022,, 277-320.		O