Ruben Vicente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952192/publications.pdf

Version: 2024-02-01

71102 79698 8,877 70 41 73 citations h-index g-index papers 116 116 116 5328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent progress in the chemistry of 12-membered pyridine-containing tetraazamacrocycles: from synthesis to catalysis. Dalton Transactions, 2022, 51, 10635-10657.	3.3	7
2	Augmented Reality, a Review of a Way to Represent and Manipulate 3D Chemical Structures. Journal of Chemical Information and Modeling, 2022, 62, 1863-1872.	5.4	21
3	Source-Sink Dynamics in Field-Grown Durum Wheat Under Contrasting Nitrogen Supplies: Key Role of Non-Foliar Organs During Grain Filling. Frontiers in Plant Science, 2022, 13, 869680.	3.6	9
4	Gold-catalysed rearrangement of unconventional cyclopropane-tethered 1,5-enynes. Chemical Communications, 2022, 58, 8206-8209.	4.1	2
5	Catalytic cyclopropanation reactions with α-silyl-, germanyl- and stannyl carbenes generated from cyclopropenes. Chemical Communications, 2022, 58, 8416-8419.	4.1	1
6	C–C Bond Cleavages of Cyclopropenes: Operating for Selective Ring-Opening Reactions. Chemical Reviews, 2021, 121, 162-226.	47.7	110
7	Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream?. Journal of Experimental Botany, 2021, 72, 3936-3955.	4.8	59
8	New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Current Opinion in Plant Biology, 2020, 56, 223-234.	7.1	52
9	Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridineâ€Containing Ligand)] Complexes. ChemCatChem, 2019, 11, 4907-4915.	3.7	17
10	C and N metabolism in barley leaves and peduncles modulates responsiveness to changing CO2. Journal of Experimental Botany, 2019, 70, 599-611.	4.8	14
11	Synthesis of 1,2-divinylcyclopropanes by metal-catalyzed cyclopropanation of 1,3-dienes with cyclopropenes as vinyl carbene precursors. Beilstein Journal of Organic Chemistry, 2019, 15, 285-290.	2.2	12
12	Synthesis of Bifunctional Allylic Compounds by Using Cyclopropenes as Functionalized Allyl Equivalents. Angewandte Chemie, 2018, 130, 11592-11596.	2.0	9
13	Synthesis of Bifunctional Allylic Compounds by Using Cyclopropenes as Functionalized Allyl Equivalents. Angewandte Chemie - International Edition, 2018, 57, 11422-11426.	13.8	34
14	Zinc-Mediated Synthesis of Heterocycles. , 2018, , 285-310.		1
15	Durum wheat ears perform better than the flag leaves under water stress: Gene expression and physiological evidence. Environmental and Experimental Botany, 2018, 153, 271-285.	4.2	52
16	Carbene X H bond insertions catalyzed by copper(I) macrocyclic pyridine-containing ligand (PcL) complexes. Journal of Organometallic Chemistry, 2017, 835, 1-5.	1.8	25
17	Zincâ€Catalyzed Synthesis of Allylsilanes by Siâ^H Bond Insertion of Vinyl Carbenoids Generated from Cyclopropenes. Angewandte Chemie, 2017, 129, 8038-8042.	2.0	12
18	Zincâ€Catalyzed Synthesis of Allylsilanes by Siâ^'H Bond Insertion of Vinyl Carbenoids Generated from Cyclopropenes. Angewandte Chemie - International Edition, 2017, 56, 7930-7934.	13.8	41

#	Article	IF	CITATIONS
19	Zincâ€Catalyzed Synthesis of Conjugated Dienoates through Unusual Crossâ€Couplings of Zinc Carbenes with Diazo Compounds. Chemistry - A European Journal, 2017, 23, 1013-1017.	3.3	31
20	Manganeseâ€Mediated Câ^'H Alkylation of Unbiased Arenes Using Alkylboronic Acids. Chemistry - A European Journal, 2016, 22, 9068-9071.	3.3	42
21	Zincâ€Catalyzed Multicomponent Reactions: Easy Access to Furylâ€Substituted Cyclopropane and 1,2â€Dioxolane Derivatives. European Journal of Organic Chemistry, 2016, 2016, 2681-2687.	2.4	25
22	Metabolic and Transcriptional Analysis of Durum Wheat Responses to Elevated CO2at Low and High Nitrate Supply. Plant and Cell Physiology, 2016, 57, 2133-2146.	3.1	67
23	Recent Progresses towards the Strengthening of Cyclopropene Chemistry. Synthesis, 2016, 48, 2343-2360.	2.3	95
24	Gold(I)â€Catalyzed Synthesis of Tetrahydrocarbazoles <i>via</i> Cascade [3,3]â€Propargylic Rearrangement/[4+2] Cycloaddition of Vinylindoles and Propargylic Esters. Advanced Synthesis and Catalysis, 2016, 358, 403-409.	4.3	40
25	Zincâ€Catalyzed Alkene Cyclopropanation through Zinc Vinyl Carbenoids Generated from Cyclopropenes. Angewandte Chemie - International Edition, 2015, 54, 12139-12143.	13.8	60
26	Zincâ€Catalyzed Functionalization of SiH Bonds with 2â€Furyl Carbenoids through Threeâ€Component Coupling. Chemistry - A European Journal, 2015, 21, 8998-9002.	3.3	29
27	Synthesis of Silylcyclopropanes through the Catalytic Generation of Zinc Silylcarbenoids from Enynones. Synlett, 2015, 26, 2685-2689.	1.8	8
28	Zinc reagents as non-noble catalysts for alkyne activation. Tetrahedron Letters, 2015, 56, 1600-1608.	1.4	25
29	Zinc-catalyzed synthesis of 2-alkenylfurans via cross-coupling of enynones and diazo compounds. Chemical Communications, 2014, 50, 8536-8538.	4.1	59
30	Zinc-Catalyzed Cyclopropenation of Alkynes via 2-Furylcarbenoids. Organic Letters, 2014, 16, 5780-5783.	4.6	61
31	Mechanistic Studies on the Rearrangement of 1â€Alkenylâ€2â€alkynylcyclopropanes: From Allylic Gold(I) Cations to Stable Carbocations. Angewandte Chemie - International Edition, 2014, 53, 12097-12100.	13.8	33
32	Rhodium-catalyzed carbene transfer to alkynes via 2-furylcarbenes generated from enynones. Chemical Communications, 2014, 50, 5379-5381.	4.1	45
33	Gold-catalyzed synthesis of tetrahydrocarbazole derivatives through an intermolecular cycloaddition of vinyl indoles and N-allenamides. Chemical Communications, 2013, 49, 3594.	4.1	75
34	Zincâ€Catalyzed Synthesis of Functionalized Furans and Triarylmethanes from Enynones and Alcohols or Azoles: Dual XH Bond Activation by Zinc. Angewandte Chemie - International Edition, 2013, 52, 5853-5857.	13.8	124
35	Zinc-catalyzed Meinwald rearrangement of tetrasubstituted 1-alkynyloxiranes to tertiary α-alkynylketones. Catalysis Science and Technology, 2013, 3, 932.	4.1	9
36	Goldâ€Catalyzed Functionalization of Unactivated C(sp ³)H Bonds by Hydride Transfer Facilitated by Alkynylspirocyclopropanes. Angewandte Chemie - International Edition, 2012, 51, 10377-10381.	13.8	60

#	Article	IF	Citations
37	An Alternative Reaction Outcome in the Goldâ€Catalyzed Rearrangement of 1â€Alkynyloxiranes. European Journal of Organic Chemistry, 2012, 2012, 6140-6143.	2.4	18
38	Base- and metal-free C–H direct arylations of naphthalene and other unbiased arenes with diaryliodonium salts. Chemical Communications, 2012, 48, 9089.	4.1	70
39	Catalytic Generation of Zinc Carbenes from Alkynes: Zincâ€Catalyzed Cyclopropanation and SiH Bond Insertion Reactions. Angewandte Chemie - International Edition, 2012, 51, 8063-8067.	13.8	149
40	Metal-Free Direct Arylations of Indoles and Pyrroles with Diaryliodonium Salts. Organic Letters, 2011, 13, 2358-2360.	4.6	158
41	Carboxylate-Assisted Ruthenium-Catalyzed Direct Alkylations of Ketimines. Organic Letters, 2011, 13, 1875-1877.	4.6	204
42	Recent advances in indole syntheses: New routes for a classic target. Organic and Biomolecular Chemistry, 2011, 9, 6469.	2.8	335
43	Goldâ€Catalyzed Rearrangements: Reaction Pathways Using 1â€Alkenylâ€2â€alkynylcyclopropane Substrates. Angewandte Chemie - International Edition, 2011, 50, 2107-2110.	13.8	46
44	Alkynylcyclopropanes from Terminal Alkynes through Consecutive Coupling to Fischer Carbene Complexes and Selective Propargylene Transfer. Chemistry - A European Journal, 2011, 17, 2349-2352.	3.3	21
45	Rhodium(I)-catalyzed [3+2+2]-cyclization of alkenyl Fischer carbene complexes with methyl buta-2,3-dienoate. Tetrahedron, 2010, 66, 6335-6339.	1.9	19
46	Ruthenium-Catalyzed C-H Bond Functionalizations of 1,2,3-Triazol-4-yl-Substituted Arenes: Dehydrogenative Couplings Versus Direct Arylations. Synthesis, 2010, 2010, 2245-2253.	2.3	90
47	Mechanistic Insight into Direct Arylations with Ruthenium(II) Carboxylate Catalysts. Organic Letters, 2010, 12, 5032-5035.	4.6	256
48	Rutheniumâ€Catalyzed Direct Arylations of <i>N</i> â€Aryl 1,2,3â€Triazoles with Aryl Chlorides as Electrophiles. ChemSusChem, 2009, 2, 546-549.	6.8	101
49	Rutheniumâ€Catalyzed Regioselective Direct Alkylation of Arenes with Unactivated Alkyl Halides through CH Bond Cleavage. Angewandte Chemie - International Edition, 2009, 48, 6045-6048.	13.8	301
50	Transitionâ€Metalâ€Catalyzed Direct Arylation of (Hetero)Arenes by CH Bond Cleavage. Angewandte Chemie - International Edition, 2009, 48, 9792-9826.	13.8	2,623
51	Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages. Topics in Current Chemistry, 2009, 292, 211-229.	4.0	221
52	Air-Stable Secondary Phosphine Oxide as Preligand for Palladium-Catalyzed Intramolecular α-Arylations with Chloroarenes. Organic Letters, 2009, 11, 4274-4276.	4.6	101
53	Catalytic Direct Arylations in Polyethylene Glycol (PEG): Recyclable Palladium(0) Catalyst for Câ ⁻ H Bond Cleavages in the Presence of Air. Organic Letters, 2009, 11, 4922-4925.	4.6	162
54	Transmetalation Reactions from Fischer Carbene Complexes to Late Transition Metals: A DFT Study. Chemistry - A European Journal, 2008, 14, 11222-11230.	3.3	44

#	Article	IF	CITATIONS
55	Palladiumâ€Catalyzed Direct Arylations of 1,2,3â€Triazoles with Aryl Chlorides using Conventional Heating. Advanced Synthesis and Catalysis, 2008, 350, 741-748.	4.3	168
56	Assisted Ruthenium-Catalyzed Câ^'H Bond Activation: Carboxylic Acids as Cocatalysts for Generally Applicable Direct Arylations in Apolar Solvents. Organic Letters, 2008, 10, 2299-2302.	4.6	365
57	Copper-Catalyzed "Click―Reaction/Direct Arylation Sequence: Modular Syntheses of 1,2,3-Triazoles. Organic Letters, 2008, 10, 3081-3084.	4.6	320
58	Cu(I)-Catalyzed Regioselective Synthesis of Polysubstituted Furans from Propargylic Esters via Postulated (2-Furyl)carbene Complexes. Journal of the American Chemical Society, 2008, 130, 13528-13529.	13.7	116
59	Rearrangement of Propargylic Esters:Â Metal-Based Stereospecific Synthesis of (E)- and (Z)-Knoevenagel Derivatives. Journal of the American Chemical Society, 2007, 129, 7772-7773.	13.7	97
60	Highly Chemo-, Regio-, and Stereoselective [3+2]-Cyclization of Activated and Deactivated Allenes with Alkenyl Fischer Carbene Complexes:  A Straightforward Access to Alkylidenecyclopentanone Derivatives. Journal of the American Chemical Society, 2006, 128, 7050-7054.	13.7	51
61	Chromium(0)–rhodium(I) metal exchange: Synthesis and X-ray structure of new Fischer (NHC)carbene complexes of rhodium(I). Journal of Organometallic Chemistry, 2006, 691, 5642-5647.	1.8	33
62	Rhodium(I) catalyzed four-component reaction of Fischer alkenyl carbene complexes and 1,1-diphenylallene. Tetrahedron, 2005, 61, 11327-11332.	1.9	16
63	Specific Synthesis of 1,2- and 1,3-Dialkylidenecycloheptanes by $[3 + 2 + 2]$ Cyclization of Alkenyl Fischer Carbene Complexes and Allenes ChemInform, 2005, 36, no.	0.0	0
64	Copper-Catalyzed Dimerization of Chromium Fischer Carbene Complexes: Synthesis of Dialkoxytrienes and Their Nazarov-Type Cyclization to 2-Alkoxy-2-cyclopentenones ChemInform, 2005, 36, no.	0.0	0
65	New Fischer Carbene Complexes of Rhodium(I): Preparation and 2-Cyclopentenone Ring Synthesis by Anellation to Alkynes ChemInform, 2004, 35, no.	0.0	0
66	Metal-Controlled Selective [3 + 2] Cyclization Reactions of Alkenyl Fischer Carbene Complexes and Allenes ChemInform, 2004, 35, no.	0.0	0
67	Copper-catalyzed dimerization of chromium Fischer carbene complexes: synthesis of dialkoxytrienes and their Nazarov-type cyclization to 2-alkoxy-2-cyclopentenones. Journal of Organometallic Chemistry, 2004, 689, 3793-3799.	1.8	35
68	New Fischer Carbene Complexes of Rhodium(I):Â Preparation and 2-Cyclopentenone Ring Synthesis by Annelation to Alkynes. Journal of the American Chemical Society, 2004, 126, 470-471.	13.7	92
69	Metal-Controlled Selective [3+2] Cyclization Reactions of Alkenyl Fischer Carbene Complexes and Allenes. Journal of the American Chemical Society, 2004, 126, 5974-5975.	13.7	69
70	Specific Synthesis of 1,2- and 1,3-Dialkylidenecycloheptanes by [3+2+2] Cyclization of Alkenyl Fischer Carbene Complexes and Allenes. Journal of the American Chemical Society, 2004, 126, 14354-14355.	13.7	62