Carmen Blanco-Aparicio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PTEN/PI3K/AKT Signalling Pathway in Cancer, Therapeutic Implications. Current Cancer Drug Targets, 2008, 8, 187-198.	1.6	685
2	Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science, 2016, 354, .	12.6	466
3	PTEN, more than the AKT pathway. Carcinogenesis, 2007, 28, 1379-1386.	2.8	355
4	STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nature Medicine, 2018, 24, 1024-1035.	30.7	285
5	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
6	The PIM Family of Serine/Threonine Kinases in Cancer. Medicinal Research Reviews, 2014, 34, 136-159.	10.5	191
7	A Novel Regulatory Mechanism of Map Kinases Activation and Nuclear Translocation Mediated by Pka and the Ptp-Sl Tyrosine Phosphatase. Journal of Cell Biology, 1999, 147, 1129-1136.	5.2	152
8	Pim kinases in cancer: Diagnostic, prognostic and treatment opportunities. Biochemical Pharmacology, 2013, 85, 629-643.	4.4	137
9	Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents. Biochemical Journal, 2003, 372, 193-201.	3.7	112
10	PIM2 inhibition as a rational therapeutic approach in B-cell lymphoma. Blood, 2011, 118, 5517-5527.	1.4	83
11	Potato Carboxypeptidase Inhibitor, a T-knot Protein, Is an Epidermal Growth Factor Antagonist That Inhibits Tumor Cell Growth. Journal of Biological Chemistry, 1998, 273, 12370-12377.	3.4	78
12	Lysosomal trapping of palbociclib and its functional implications. Oncogene, 2019, 38, 3886-3902.	5.9	57
13	MAP17 enhances the malignant behavior of tumor cells through ROS increase. Carcinogenesis, 2007, 28, 2096-2104.	2.8	55
14	Pim 1 kinase inhibitor ETP-45299 suppresses cellular proliferation and synergizes with PI3K inhibition. Cancer Letters, 2011, 300, 145-153.	7.2	53
15	Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts. Cancer Cell, 2017, 32, 590-607.e4.	16.8	52
16	MAP17 overexpression is a common characteristic of carcinomas. Carcinogenesis, 2007, 28, 1646-1652.	2.8	48
17	Activation of Phosphatidylinositol 3-Kinase by Membrane Localization of p110α Predisposes Mammary Glands to Neoplastic Transformation. Cancer Research, 2008, 68, 9643-9653.	0.9	47
18	Modulation of telomere protection by the PI3K/AKT pathway. Nature Communications, 2017, 8, 1278.	12.8	47

#	Article	IF	CITATIONS
19	Therapeutic inhibition of <scp>TRF</scp> 1 impairs the growth of <i>p53</i> â€deficient <i>Kâ€Ras</i> ^{ <i>G12V</i>} <i>â€</i> induced lung cancer by induction of telomeric <scp>DNA</scp> damage. EMBO Molecular Medicine, 2015, 7, 930-949.	6.9	45
20	Mice expressing myrAKT1 in the mammary gland develop carcinogen-induced ER-positive mammary tumors that mimic human breast cancer. Carcinogenesis, 2007, 28, 584-594.	2.8	44
21	The mTOR pathway is necessary for survival of mice with short telomeres. Nature Communications, 2020, 11, 1168.	12.8	44
22	A novel phosphatidylinositol 3-kinase (PI3K) inhibitor directs a potent FOXO-dependent, p53-independent cell cycle arrest phenotype characterized by the differential induction of a subset of FOXO-regulated genes. Breast Cancer Research, 2014, 16, 482.	5.0	41
23	Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell Cycle, 2011, 10, 2751-2762.	2.6	40
24	Extreme sensitivity to YondelisÂ $^{\odot}$ (Trabectedin, ET-743) in low passaged sarcoma cell lines correlates with mutated p53. Journal of Cellular Biochemistry, 2007, 100, 339-348.	2.6	39
25	Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1591-1597.	2.2	38
26	Multiple cancer pathways regulate telomereÂprotection. EMBO Molecular Medicine, 2019, 11, e10292.	6.9	36
27	Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nature Cell Biology, 2020, 22, 1223-1238.	10.3	35
28	The essential role of PIM kinases in sarcoma growth and bone invasion. Carcinogenesis, 2012, 33, 1479-1486.	2.8	34
29	Simultaneous inhibition of pan-phosphatidylinositol-3-kinases and MEK as a potential therapeutic strategy in peripheral T-cell lymphomas. Haematologica, 2013, 98, 57-64.	3.5	33
30	Disruptive chemicals, senescence and immortality. Carcinogenesis, 2015, 36, S19-S37.	2.8	32
31	Exome Sequencing of Plasma DNA Portrays the Mutation Landscape of Colorectal Cancer and Discovers Mutated VEGFR2 Receptors as Modulators of Antiangiogenic Therapies. Clinical Cancer Research, 2018, 24, 3550-3559.	7.0	32
32	Levels of p27kip1 determine Aplidin sensitivity. Molecular Cancer Therapeutics, 2007, 6, 1310-1316.	4.1	31
33	Spinophilin loss contributes to tumorigenesis in vivo. Cell Cycle, 2011, 10, 1948-1955.	2.6	31
34	Mechanism of action of potato carboxypeptidase inhibitor (PCI) as an EGF blocker. Cancer Letters, 2005, 226, 169-184.	7.2	30
35	Inhibiting PI3K as a therapeutic strategy against cancer. Clinical and Translational Oncology, 2009, 11, 572-579.	2.4	28
36	Exploring the Gain of Function Contribution of AKT to Mammary Tumorigenesis in Mouse Models. PLoS ONE, 2010, 5, e9305.	2.5	28

CARMEN BLANCO-APARICIO

#	Article	IF	CITATIONS
37	Conditional Transgenic Expression of PIM1 Kinase in Prostate Induces Inflammation-Dependent Neoplasia. PLoS ONE, 2013, 8, e60277.	2.5	28
38	The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Scientific Reports, 2016, 6, 38079.	3.3	28
39	The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nature Communications, 2019, 10, 5428.	12.8	28
40	Two Clusters of Residues at the Docking Groove of Mitogen-activated Protein Kinases Differentially Mediate Their Functional Interaction with the Tyrosine Phosphatases PTP-SL and STEP. Journal of Biological Chemistry, 2002, 277, 2629-2636.	3.4	27
41	Antiâ€ŧumor effects of PIM / PI 3K/ mTOR triple kinase inhibitor IBL â€302 in neuroblastoma. EMBO Molecular Medicine, 2019, 11, e10058.	6.9	27
42	Mst1, RanBP2 and eIF4G are new markers for in vivo PI3K activation in murine and human prostate. Carcinogenesis, 2007, 28, 1418-1425.	2.8	25
43	Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis, 2014, 35, 2822-2830.	2.8	25
44	Genetic Modeling of PIM Proteins in Cancer: Proviral Tagging and Cooperation with Oncogenes, Tumor Suppressor Genes, and Carcinogens. Frontiers in Oncology, 2014, 4, 109.	2.8	25
45	Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget, 2017, 8, 58872-58886.	1.8	24
46	ERK2 Shows a Restrictive and Locally Selective Mechanism of Recognition by Its Tyrosine Phosphatase Inactivators Not Shared by Its Activator MEK1. Journal of Biological Chemistry, 2005, 280, 37885-37894.	3.4	22
47	Preclinical evaluation of a novel triple-acting PIM/PI3K/mTOR inhibitor, IBL-302, in breast cancer. Oncogene, 2020, 39, 3028-3040.	5.9	22
48	Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. European Journal of Medicinal Chemistry, 2019, 168, 87-109.	5.5	21
49	Inhibition of phosphatidylinositol-3-kinase synergizes with gemcitabine in low-passage tumor cell lines correlating with Bax translocation to the mitochondria. Anti-Cancer Drugs, 2005, 16, 977-987.	1.4	20
50	Downâ€regulation of <i>spinophilin</i> in lung tumours contributes to tumourigenesis. Journal of Pathology, 2011, 225, 73-82.	4.5	20
51	Genetic modelling of the PTEN/AKT pathway in cancer research. Clinical and Translational Oncology, 2008, 10, 618-627.	2.4	19
52	Rapid identification of ETP-46992, orally bioavailable PI3K inhibitor, selective versus mTOR. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5208-5214.	2.2	19
53	PIM Kinases as Potential Therapeutic Targets in a Subset of Peripheral T Cell Lymphoma Cases. PLoS ONE, 2014, 9, e112148.	2.5	18
54	Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24415-24426.	7.1	15

#	Article	IF	CITATIONS
55	ETP-46321, a dual p110 $\hat{l}\pm/\hat{l}$ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis. Biochemical Pharmacology, 2016, 106, 56-69.	4.4	14
56	A clinically compatible drugâ€screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis. EMBO Molecular Medicine, 2022, 14, e14552.	6.9	12
57	Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis. BMC Cancer, 2014, 14, 281.	2.6	11
58	Screening Health-Promoting Compounds for Their Capacity to Induce the Activity of FOXO3. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1485-1493.	3.6	11
59	Omipalisib inspired macrocycles as dual PI3K/mTOR inhibitors. European Journal of Medicinal Chemistry, 2021, 211, 113109.	5.5	8
60	Macrocyclization as a Source of Desired Polypharmacology. Discovery of Triple PI3K/mTOR/PIM Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1794-1801.	2.8	8
61	Pyrido[2,3-b][1,5]benzoxazepin-5(6H)-one derivatives as CDK8 inhibitors. European Journal of Medicinal Chemistry, 2020, 201, 112443.	5.5	7
62	Induction of Lysosome Membrane Permeabilization as a Therapeutic Strategy to Target Pancreatic Cancer Stem Cells. Cancers, 2020, 12, 1790.	3.7	7
63	Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC. Cancers, 2021, 13, 2139.	3.7	6
64	Identification of novel PI3K inhibitors through a scaffold hopping strategy. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4794-4799.	2.2	5
65	Regulation of MAPK Cascades by Protein Tyrosine Phosphatases. , 2004, 250, 103-112.		4
66	Screening protocol for the identification of modulators by immunofluorescent cellâ€based assay. Chemical Biology and Drug Design, 2020, 95, 66-78.	3.2	0