Francis L W Ratnieks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951424/publications.pdf

Version: 2024-02-01

205 papers 11,844 citations

58 h-index

23567

34986

g-index

205 all docs 205 docs citations

205 times ranked 6470 citing authors

#	Article	IF	CITATIONS
1	Can Beekeeping Improve Mental Wellbeing during Times of Crisis?. Bee World, 2022, 99, 40-43.	0.8	8
2	Clover in agriculture: combined benefits for bees, environment, and farmer. Journal of Insect Conservation, 2022, 26, 339-357.	1.4	8
3	The disproportionate value of â€~weeds' to pollinators and biodiversity. Journal of Applied Ecology, 2022, 59, 1209-1218.	4.0	18
4	Population assessment and foraging ecology of the rare solitary bee Anthophora retusa at Seaford Head Nature reserve. Journal of Insect Conservation, 2021, 25, 49-63.	1.4	2
5	Energetic efficiency of foraging mediates bee niche partitioning. Ecology, 2021, 102, e03285.	3.2	13
6	Phenology of the specialist bee Colletes hederae and its dependence on Hedera helix L. in comparison to a generalist, Apis mellifera. Arthropod-Plant Interactions, 2021, 15, 183-195.	1.1	1
7	Plants and pollinators: Will natural selection cause an imbalance between nectar supply and demand?. Ecology Letters, 2021, 24, 1741-1749.	6.4	7
8	Wind slows play: increasing wind speed reduces flower visiting rate in honey bees. Animal Behaviour, 2021, 178, 87-93.	1.9	18
9	Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agriculture, Ecosystems and Environment, 2020, 291, 106792.	5.3	40
10	Stinging risk and sting pain of the ivy bee, Colletes hederae. Journal of Apicultural Research, 2020, 59, 223-231.	1.5	1
11	Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia, 2020, 192, 351-361.	2.0	28
12	Thug life: bramble (<scp><i>Rubus fruticosus</i></scp> L. agg.) is a valuable foraging resource for honeybees and diverse flowerâ€visiting insects. Insect Conservation and Diversity, 2020, 13, 543-557.	3.0	14
13	Population assessment and foraging ecology of nest aggregations of the rare solitary bee, Eucera longicornis at Gatwick Airport, and implications for their management. Journal of Insect Conservation, 2020, 24, 947-960.	1.4	4
14	Exploitative competition and displacement mediated by eusocial bees: experimental evidence in a wild pollinator community. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	25
15	Caveat Emptor: Do Products Sold to Help Bees and Pollinating Insects Actually Work?. Bee World, 2020, 97, 57-60.	0.8	3
16	Multiple methods of assessing nectar foraging conditions indicate peak foraging difficulty in late season. Insect Conservation and Diversity, 2020, 13, 532-542.	3.0	12
17	Queen Execution, Diploid Males, and Selection For and Against Polyandry in the Brazilian Stingless Bee <i>Scaptotrigona depilis</i> . American Naturalist, 2019, 194, 725-735.	2.1	7
18	Garden centre customer attitudes to pollinators and pollinator-friendly planting. PeerJ, 2019, 7, e7088.	2.0	12

#	Article	IF	Citations
19	British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 2018, 222, 278-283.	4.1	61
20	Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 2018, 8, 441-451.	1.9	106
21	brood. Journal of Apicultural Research, 2018, 57, 433-437.	1.5	1
22	Organization enhances collective vigilance in the hovering guards of Tetragonisca angustula bees. Behavioral Ecology, 2018, 29, 1105-1112.	2.2	11
23	proportion of varroa in small patches of sealed brood cells. Journal of Apicultural Research, 2018, 57, 444-451.	1.5	2
24	twice with oxalic acid via sublimation. Journal of Apicultural Research, 2018, 57, 438-443.	1.5	10
25	Review: Have suitable experimental designs been used to determine the effects of neonicotinoid insecticides on bee colony performance in the field?. Journal of Apicultural Research, 2018, 57, 586-592.	1.5	6
26	Both hygienic and non-hygienic honeybee, Apis mellifera, colonies remove dead and diseased larvae from open brood cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170201.	4.0	12
27	First record of small hive beetle, <i>Aethina tumida</i> Murray, in South America. Journal of Apicultural Research, 2017, 56, 76-80.	1.5	38
28	Individual and genetic task specialization in policing behaviour in the European honeybee. Animal Behaviour, 2017, 128, 95-102.	1.9	2
29	Diploid Male Production Results in Queen Death in the Stingless Bee Scaptotrigona depilis. Journal of Chemical Ecology, 2017, 43, 403-410.	1.8	12
30	Using the waggle dance to determine the spatial ecology of honey bees during commercial crop pollination. Agricultural and Forest Entomology, 2017, 19, 210-216.	1.3	21
31	Landscape Scale Study of the Net Effect of Proximity to a Neonicotinoid-Treated Crop on Bee Colony Health. Environmental Science & Technology, 2017, 51, 10825-10833.	10.0	20
32	Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ, 2017, 5, e3066.	2.0	40
33	Data reliability in citizen science: learning curve and the effects of training method, volunteer background and experience on identification accuracy of insects visiting ivy flowers. Methods in Ecology and Evolution, 2016, 7, 1226-1235.	5.2	76
34	Hygienic behaviour in Brazilian stingless bees. Biology Open, 2016, 5, 1712-1718.	1.2	16
35	Quality versus quantity: Foraging decisions in the honeybee (<i>Apis mellifera scutellata</i>) feeding on wildflower nectar and fruit juice. Ecology and Evolution, 2016, 6, 7156-7165.	1.9	22
36	Roof Top Hives: Practical Beekeeping or Publicity Stunt?. Bee World, 2016, 93, 64-67.	0.8	9

#	Article	IF	CITATIONS
37	Garden varieties: How attractive are recommended garden plants to butterflies?. Journal of Insect Conservation, 2016, 20, 141-148.	1.4	13
38	Dancing to her own beat: honey bee foragers communicate via individually calibrated waggle dances. Journal of Experimental Biology, 2016, 219, 1287-9.	1.7	13
39	Size matters: Significant negative relationship between mature plant mass and residual neonicotinoid levels in seed-treated oilseed rape and maize crops. Agriculture, Ecosystems and Environment, 2016, 215, 85-88.	5.3	16
40	Survey of insect visitation of ornamental flowers in Southover Grange garden, Lewes, UK. Insect Science, 2015, 22, 700-705.	3.0	25
41	Busy Bees: Variation in Insect Flower-Visiting Rates across Multiple Plant Species. Psyche: Journal of Entomology, 2015, 2015, 1-7.	0.9	13
42	Collective decision making in a heterogeneous environment: Lasius niger colonies preferentially forage at easy to learn locations. Animal Behaviour, 2015, 104, 189-195.	1.9	15
43	Determining the foraging potential of oilseed rape to honey bees using aerial surveys and simulations. Journal of Apicultural Research, 2015, 54, 238-245.	1.5	3
44	the mortality of phoretic <i>Varroa destructor</i> mites and their honey bee hosts. Journal of Apicultural Research, 2015, 54, 108-120.	1.5	32
45	Honey bee dance decoding and pollen-load analysis show limited foraging on spring-flowering oilseed rape, a potential source of neonicotinoid contamination. Agriculture, Ecosystems and Environment, 2015, 203, 62-68.	5.3	55
46	Unnatural Contexts Cause Honey Bee Guards to Adopt Nonâ€Guarding Behaviours Towards Allospecifics and Conspecifics. Ethology, 2015, 121, 410-418.	1.1	2
47	Eating locally: dance decoding demonstrates that urban honey bees in Brighton, UK, forage mainly in the surrounding urban area. Urban Ecosystems, 2015, 18, 411-418.	2.4	44
48	Using the British National Collection of Asters to Compare the Attractiveness of 228 Varieties to Flower-Visiting Insects. Environmental Entomology, 2015, 44, 638-646.	1.4	19
49	Caffeinated Forage Tricks Honeybees into Increasing Foraging and Recruitment Behaviors. Current Biology, 2015, 25, 2815-2818.	3.9	57
50	Public approval plus more wildlife: twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, <scp>UK</scp> . Insect Conservation and Diversity, 2015, 8, 107-119.	3.0	57
51	Following the dance: Ground survey of flowers and flower-visiting insects in a summer foraging hotspot identified via honey bee waggle dance decoding. Agriculture, Ecosystems and Environment, 2015, 213, 265-271.	5.3	25
52	Exploitative competition alters bee foraging and flower choice. Behavioral Ecology and Sociobiology, 2015, 69, 1731-1738.	1.4	57
53	Honey bee foraging distance depends on month and forage type. Apidologie, 2015, 46, 61-70.	2.0	89
54	Patch size has no effect on insect visitation rate per unit area in garden-scale flower patches. Acta Oecologica, 2015, 62, 53-57.	1.1	14

#	Article	IF	CITATIONS
55	Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees. Behavioral Ecology and Sociobiology, 2015, 69, 273-281.	1.4	47
56	Trail Pheromones: An Integrative View of Their Role in Social Insect Colony Organization. Annual Review of Entomology, 2015, 60, 581-599.	11.8	164
57	The dose makes the poison: have "field realistic―rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?. Journal of Apicultural Research, 2014, 53, 607-614.	1.5	115
58	Rapid up- and down-regulation of pheromone signalling due to trail crowding in the ant Lasius niger. Behaviour, 2014, 151, 669-682.	0.8	8
59	Towards integrated control of varroa: effect of variation in hygienic behaviour among honey bee colonies on mite population increase and deformed wing virus incidence. Journal of Apicultural Research, 2014, 53, 555-562.	1.5	38
60	Lattice fence and hedge barriers around an apiary increase honey bee flight height and decrease stings to people nearby. Journal of Apicultural Research, 2014, 53, 67-74.	1.5	6
61	lvy: an underappreciated key resource to flowerâ€visiting insects in autumn. Insect Conservation and Diversity, 2014, 7, 91-102.	3.0	37
62	Listmania: The Strengths and Weaknesses of Lists of Garden Plants to Help Pollinators. BioScience, 2014, 64, 1019-1026.	4.9	64
63	Killing and Replacing Queen-Laid Eggs: Low Cost of Worker Policing in the Honeybee. American Naturalist, 2014, 184, 110-118.	2.1	8
64	The effect of one generation of controlled mating on the expression of hygienic behaviour in honey bees. Journal of Apicultural Research, 2014, 53, 563-568.	1.5	21
65	Effect of Trail Bifurcation Asymmetry and Pheromone Presence or Absence on Trail Choice by <i>Lasius niger</i> Ants. Ethology, 2014, 120, 768-775.	1.1	16
66	Dancing Bees Communicate a Foraging Preference for Rural Lands in High-Level Agri-Environment Schemes. Current Biology, 2014, 24, 1212-1215.	3.9	104
67	Quantifying variation among garden plants in attractiveness to bees and other flowerâ€visiting insects. Functional Ecology, 2014, 28, 364-374.	3.6	160
68	Recognition of nestmate eggs in the ant Formica fusca is based on queen derived cues. Environmental Epigenetics, 2014, 60, 131-136.	1.8	11
69	Waggle Dance Distances as Integrative Indicators of Seasonal Foraging Challenges. PLoS ONE, 2014, 9, e93495.	2.5	154
70	Ant foraging on complex trails: route learning and the role of trail pheromones in <i>Lasius niger</i> . Journal of Experimental Biology, 2013, 216, 188-97.	1.7	74
71	Honey bee waggle dance communication: signal meaning and signal noise affect dance follower behaviour. Behavioral Ecology and Sociobiology, 2013, 67, 549-556.	1.4	27
72	Longer tongues and swifter handling: why do more bumble bees (<i>Bombus</i> spp.) than honey bees (<i>Apis mellifera</i>) forage on lavender (<i>Lavandula</i> spp.)?. Ecological Entomology, 2013, 38, 323-329.	2.2	38

#	Article	IF	CITATIONS
73	Incorporating variability in honey bee waggle dance decoding improves the mapping of communicated resource locations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 1143-1152.	1.6	48
74	Persistence to Unrewarding Feeding Locations by Honeybee Foragers (<i><scp>A</scp>pis) Tj ETQq0 0 0 rgBT /O</i>	verlock 10 1.1) Tf 50 707 ⁻ 39
7 5	Social learning strategies in honeybee foragers: do the costs of using private information affect the use of social information?. Animal Behaviour, 2013, 85, 1443-1449.	1.9	32
76	Context affects nestmate recognition errors in honey bees and stingless bees. Journal of Experimental Biology, 2013, 216, 3055-61.	1.7	22
77	Factors influencing survival duration and choice of virgin queens in the stingless bee Melipona quadrifasciata. Die Naturwissenschaften, 2013, 100, 571-580.	1.6	11
78	Hygienic Behavior in Honey Bees (Hymenoptera: Apidae): Effects of Brood, Food, and Time of the Year. Journal of Economic Entomology, 2013, 106, 2280-2285.	1.8	23
79	Negative feedback in ants: crowding results in less trail pheromone deposition. Journal of the Royal Society Interface, 2013, 10, 20121009.	3.4	58
80	Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs. Biology Letters, 2012, 8, 540-543.	2.3	19
81	Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding. Biology Open, 2012, 1, 467-472.	1.2	58
82	Uncovering the complexity of ant foraging trails. Communicative and Integrative Biology, 2012, 5, 78-80.	1.4	7
83	An evolutionary ecology of individual differences. Ecology Letters, 2012, 15, 1189-1198.	6.4	380
84	A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1182-1186.	7.1	114
85	Comparing Alternative Methods for Holding Virgin Honey Bee Queens for One Week in Mailing Cages before Mating. PLoS ONE, 2012, 7, e50150.	2.5	3
86	Pheromone trails in the Brazilian ant Pheidole oxyops: extreme properties and dual recruitment action. Behavioral Ecology and Sociobiology, 2012, 66, 1149-1156.	1.4	24
87	The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behavioral Ecology and Sociobiology, 2012, 66, 1-12.	1.4	40
88	Model of collective decision-making in nestmate recognition fails to account for individual discriminator responses and non-independent discriminator errors. Behavioral Ecology and Sociobiology, 2012, 66, 339-341.	1.4	8
89	Acceptance by Honey Bee Guards of Non-Nestmates is not Increased by Treatment with Nestmate Odours. Ethology, 2011, 117, 655-663.	1.1	6
90	Only full-sibling families evolved eusociality. Nature, 2011, 471, E4-E5.	27.8	74

#	Article	IF	CITATIONS
91	Honeybee foragers increase the use of waggle dance information when private information becomes unrewarding. Animal Behaviour, 2011, 81, 949-954.	1.9	68
92	Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behavioral Ecology and Sociobiology, 2011, 65, 141-148.	1.4	124
93	Co-occurrence of three types of egg policing in the Norwegian wasp Dolichovespula norwegica. Behavioral Ecology and Sociobiology, 2011, 65, 633-640.	1.4	20
94	Darwin's special difficulty: the evolution of "neuter insects―and current theory. Behavioral Ecology and Sociobiology, 2011, 65, 481-492.	1.4	36
95	Hovering guards of the stingless bee Tetragonisca angustula increase colony defensive perimeter as shown by intra- and inter-specific comparisons. Behavioral Ecology and Sociobiology, 2011, 65, 1277-1282.	1.4	43
96	Comparative methylomics reveals gene-body H3K36me3 in <i>Drosophila</i> predicts DNA methylation and CpG landscapes in other invertebrates. Genome Research, 2011, 21, 1841-1850.	5.5	57
97	Synergy between social and private information increases foraging efficiency in ants. Biology Letters, 2011, 7, 521-524.	2.3	91
98	Flower constancy in honey bee workers (<i>Apis mellifera</i>) depends on ecologically realistic rewards. Journal of Experimental Biology, 2011, 214, 1397-1402.	1.7	72
99	Flower constancy in insect pollinators: Adaptive foraging behaviour or cognitive limitation?. Communicative and Integrative Biology, 2011, 4, 633-636.	1.4	72
100	Honey bee guards recognise allospecific intruders via "different odours―not "harmful-intruder odours― Journal of Apicultural Research, 2010, 49, 270-277.	1.5	5
101	Alarm Pheromones Do Not Mediate Rapid Shifts in Honey Bee Guard Acceptance Threshold. Journal of Chemical Ecology, 2010, 36, 1306-1308.	1.8	11
102	Social Learning: The Importance of Copying Others. Current Biology, 2010, 20, R683-R685.	3.9	47
103	Sexual selection in honey bees: colony variation and the importance of size in male mating success. Behavioral Ecology, 2010, 21, 520-525.	2.2	47
104	Clarity on Honey Bee Collapse?. Science, 2010, 327, 152-153.	12.6	247
105	The evolution of extreme altruism and inequality in insect societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3169-3179.	4.0	69
106	Recognition errors by honey bee (Apis mellifera) guards demonstrate overlapping cues in conspecific recognition. Journal of Apicultural Research, 2009, 48, 225-232.	1.5	15
107	Standing and hovering guards of the stingless bee <i>Tetragonisca angustula</i> complement each other in entrance guarding and intruder recognition. Journal of Apicultural Research, 2009, 48, 209-214.	1.5	33
108	Sex allocation conflict in insect societies: who wins?. Biology Letters, 2009, 5, 700-704.	2.3	23

#	Article	IF	Citations
109	Two independent mechanisms of egg recognition in worker Formica fusca ants. Behavioral Ecology and Sociobiology, 2009, 63, 573-580.	1.4	20
110	Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an "undesirable–absent―recognition system. Behavioral Ecology and Sociobiology, 2008, 62, 1099-1105.	1.4	31
111	Combined use of pheromone trails and visual landmarks by the common garden ant Lasius niger. Behavioral Ecology and Sociobiology, 2008, 63, 261-267.	1.4	58
112	An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging. Journal of Theoretical Biology, 2008, 255, 250-258.	1.7	41
113	Effects of hive spacing, entrance orientation, and worker activity on nest relocation by honey bee queens. Apidologie, 2008, 39, 708-713.	2.0	4
114	The organization of soil disposal by ants. Animal Behaviour, 2008, 75, 1389-1399.	1.9	10
115	En garde: rapid shifts in honeybee, Apis mellifera, guarding behaviour are triggered by onslaught of conspecific intruders. Animal Behaviour, 2008, 76, 1653-1658.	1.9	53
116	Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality. Science, 2008, 320, 1213-1216.	12.6	608
117	Altruism in insect societies and beyond: voluntary or enforced?. Trends in Ecology and Evolution, 2008, 23, 45-52.	8.7	165
118	Wasp Social Evolution: But Don't Ask "Why?― BioScience, 2008, 58, 662-663.	4.9	0
119	Preemptive Defensive Selfâ€Sacrifice by Ant Workers. American Naturalist, 2008, 172, E239-E243.	2.1	26
120	Geometry explains the benefits of division of labour in a leafcutter ant. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1255-1260.	2.6	19
121	Direct introduction of mated and virgin queens using smoke: a method that gives almost 100% acceptance when hives have been queenless for 2 days or more. Journal of Apicultural Research, 2008, 47, 243-250.	1.5	6
122	New role for majors in <i>Atta</i> leafcutter ants. Ecological Entomology, 2007, 32, 451-454.	2.2	21
123	Improved technique for introducing four-day old virgin queens to mating hives that uses artificial and natural queen cells for introduction. Journal of Apicultural Research, 2007, 46, 28-33.	1.5	5
124	Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer. Biology Letters, 2007, 3, 228-230.	2.3	41
125	Are mistakes inevitable? Sex allocation specialization by workers can reduce the genetic information needed to assess queen mating frequency. Journal of Theoretical Biology, 2007, 244, 470-477.	1.7	13

#	Article	IF	CITATIONS
127	CONFLICT RESOLUTION IN INSECT SOCIETIES. Annual Review of Entomology, 2006, 51, 581-608.	11.8	547
128	Comparative Analysis of Worker Reproduction and Policing in Eusocial Hymenoptera Supports Relatedness Theory. American Naturalist, 2006, 168, E163-E179.	2.1	203
129	Kin selection is the key to altruism. Trends in Ecology and Evolution, 2006, 21, 57-60.	8.7	342
130	There is nothing wrong with inclusive fitness. Trends in Ecology and Evolution, 2006, 21, 599-600.	8.7	55
131	Comparing alternative methods of introducing virgin queens (Apis mellifera) into mating nucleus hives. Apidologie, 2006, 37, 571-576.	2.0	7
132	Enforced altruism in insect societies. Nature, 2006, 444, 50-50.	27.8	224
133	Non-transferable signals on ant queen eggs. Die Naturwissenschaften, 2006, 93, 136-140.	1.6	21
134	Longevity and detection of persistent foraging trails in Pharaoh's ants, Monomorium pharaonis (L.). Animal Behaviour, 2006, 71, 351-359.	1.9	68
135	Wax combs mediate nestmate recognition by guard honeybees. Animal Behaviour, 2006, 71, 773-779.	1.9	75
136	Communication in ants. Current Biology, 2006, 16, R570-R574.	3.9	137
137	EVOLUTION: Policing Insect Societies. Science, 2005, 307, 54-56.	12.6	114
138	Outsmarted by ants. Nature, 2005, 436, 465-465.	27.8	4
139	No entry' signal in ant foraging. Nature, 2005, 438, 442-442.	27.8	141
140	Sand Pile Formation in Dorymyrmex Ants. Journal of Insect Behavior, 2005, 18, 505-512.	0.7	8
141	Learning and Discrimination of Individual Cuticular Hydrocarbons by Honeybees (Apis mellifera). Chemical Senses, 2005, 30, 327-335.	2.0	107
142	Absence of nepotism toward imprisoned young queens during swarming in the honey bee. Behavioral Ecology, 2005, 16, 403-409.	2.2	18
143	A new eusocial vertebrate?. Trends in Ecology and Evolution, 2005, 20, 363-364.	8.7	86
144	Working-class royalty: bees beat the caste system. Biology Letters, 2005, 1, 125-128.	2.3	40

#	Article	IF	Citations
145	Olfactory cues and Vespula wasp recognition by honey bee guards. Apidologie, 2004, 35, 461-468.	2.0	11
146	Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips. Apidologie, 2004, 35, 311-318.	2.0	50
147	Egg marking pheromones of anarchistic worker honeybees (Apis mellifera). Behavioral Ecology, 2004, 15, 839-844.	2.2	27
148	Queen Execution and Caste Conflict in the Stingless Bee Melipona beecheii. Ethology, 2004, 110, 725-736.	1.1	54
149	Trail geometry gives polarity to ant foraging networks. Nature, 2004, 432, 907-909.	27.8	151
150	Coupled computational simulation and empirical research into the foraging system of Pharaoh's ant (Monomorium pharaonis). BioSystems, 2004, 76, 101-112.	2.0	15
151	When Resistance Is Useless: Policing and the Evolution of Reproductive Acquiescence in Insect Societies. American Naturalist, 2004, 164, E154-E167.	2.1	120
152	Reproductive conflict in animal societies: hierarchy length increases with colony size in queenless ponerine ants. Behavioral Ecology and Sociobiology, 2003, 54, 71-79.	1.4	39
153	Partial nectar loads as a cause of multiple nectar transfer in the honey bee (Apis mellifera): a simulation model. Journal of Theoretical Biology, 2003, 222, 1-8.	1.7	24
154	Reproductive conflicts in social animals: who has power?. Trends in Ecology and Evolution, 2003, 18, 277-282.	8.7	92
155	Task-partitioned nectar transfer in stingless bees: work organisation in a phylogenetic context. Ecological Entomology, 2002, 27, 163-168.	2.2	23
156	A non-policing honey bee colony (Apis mellifera capensis). Die Naturwissenschaften, 2002, 89, 479-482.	1.6	15
157	Reassessing the role of the honeybee (Apis mellifera) Dufour's gland in egg marking. Die Naturwissenschaften, 2002, 89, 528-532.	1.6	37
158	Egg-marking pheromones in honey-bees Apis mellifera. Behavioral Ecology and Sociobiology, 2002, 51, 590-591.	1.4	24
159	Task partitioning in leafcutting ants. Acta Ethologica, 2002, 5, 1-11.	0.9	51
160	Pretender punishment induced by chemical signalling in a queenless ant. Nature, 2002, 419, 61-65.	27.8	136
161	Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature, 2002, 415, 163-165.	27.8	126
162	Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera). Experimental and Applied Acarology, 2002, 27, 79-88.	1.6	27

#	Article	IF	CITATIONS
163	Why do honey-bee (Apis millifera) foragers transfer nectar to several receivers? Information improvement through multiple sampling in a biological system. Behavioral Ecology and Sociobiology, 2001, 49, 244-250.	1.4	31
164	Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant Atta cephalotes. Behavioral Ecology and Sociobiology, 2001, 49, 387-392.	1.4	146
165	Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behavioral Ecology and Sociobiology, 2001, 50, 1-8.	1.4	114
166	Policing in queenless ponerine ants. Behavioral Ecology and Sociobiology, 2001, 50, 97-108.	1.4	134
167	Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review. Behavioral Ecology and Sociobiology, 2001, 50, 199-208.	1.4	153
168	Worker policing and worker reproduction in Apis cerana. Behavioral Ecology and Sociobiology, 2001, 50, 371-377.	1.4	94
169	Heirs and spares: caste conflict and excess queen production in Melipona bees. Behavioral Ecology and Sociobiology, 2001, 50, 467-473.	1.4	65
170	Colony kin structure and male production in Dolichovespula wasps. Molecular Ecology, 2001, 10, 1003-1010.	3.9	75
171	Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Animal Behaviour, 2001, 62, 227-234.	1.9	23
172	Honeybee guards do not use food-derived odors to recognize non-nest mates: a test of the Odor Convergence hypothesis. Behavioral Ecology, 2001, 12, 47-50.	2.2	22
173	The Effect of Sex-Allocation Biasing on the Evolution of Worker Policing in Hymenopteran Societies. American Naturalist, 2001, 158, 615.	2.1	3
174	Do hornets have zombie workers?. Molecular Ecology, 2000, 9, 735-742.	3.9	62
175	Facultative worker policing in a wasp. Nature, 2000, 407, 692-693.	27.8	136
176	Leaf caching in Atta leafcutting ants: discrete cache formation through positive feedback. Animal Behaviour, 2000, 59, 587-591.	1.9	36
177	The role of floral oils in the nestmate recognition system of honey bees (Apis melliferal.). Apidologie, 2000, 31, 357-365.	2.0	25
178	Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model. Behavioral Ecology, 2000, 11, 326-333.	2.2	151
179	Spite in social insects. Trends in Ecology and Evolution, 2000, 15, 469-470.	8.7	21
180	Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. Animal Behaviour, 1999, 58, 643-648.	1.9	73

#	Article	IF	CITATIONS
181	Worker allocation in insect societies: coordination of nectar foragers and nectar receivers in honey bee (Apis mellifera) colonies. Behavioral Ecology and Sociobiology, 1999, 46, 73-81.	1.4	70
182	Low paternity in the hornet Vespa crabro indicates that multiple mating by queens is derived in vespine wasps. Behavioral Ecology and Sociobiology, 1999, 46, 252-257.	1.4	83
183	Kin conflict over caste determination in social Hymenoptera. Behavioral Ecology and Sociobiology, 1999, 46, 287-297.	1.4	164
184	Reproduction versus work in queenless ants: when to join a hierarchy of hopeful reproductives?. Behavioral Ecology and Sociobiology, 1999, 46, 413-422.	1.4	49
185	Characterization of queen-specific components of the fluid released by fighting honey bee queens. Chemoecology, 1999, 9, 161-167.	1.1	8
186	Task Partitioning in Insect Societies. I. Effect of Colony Size on Queueing Delay and Colony Ergonomic Efficiency. American Naturalist, 1999, 154, 521.	2.1	9
187	Task Partitioning in Insect Societies. II. Use of Queueing Delay Information in Recruitment. American Naturalist, 1999, 154, 536.	2.1	1
188	Queen control of egg fertilization in the honey bee. Behavioral Ecology and Sociobiology, 1998, 44, 57-61.	1.4	67
189	On the Robustness of Split Sex Ratio Predictions In Social Hymenoptera. Journal of Theoretical Biology, 1997, 185, 423-439.	1.7	31
190	Evolution of unstable and stable biparental care. Behavioral Ecology, 1996, 7, 490-493.	2.2	23
191	Evidence for a queen-produced egg-marking pheromone and its use in worker policing in the honey bee. Journal of Apicultural Research, 1995, 34, 31-37.	1.5	102
192	Division of honey bee drones during swarming. Animal Behaviour, 1993, 46, 803-805.	1.9	2
193	American Foulbrood: The Spread and Control of an Important Disease of the Honey Bee. Bee World, 1992, 73, 177-191.	0.8	41
194	Conflict in single-queen hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. Journal of Theoretical Biology, 1992, 158, 33-65.	1.7	260
195	Invasion of sibmating genes in diploid and haplodiploid populations. Evolutionary Ecology, 1992, 6, 312-330.	1.2	7
196	Evolution of discriminatory aggression in marine invertebrates. Journal of Theoretical Biology, 1991, 152, 557-565.	1.7	8
197	The evolution of queen-rearing nepotism in social Hymenoptera: Effects of discrimination costs in swarming species. Journal of Evolutionary Biology, 1991, 4, 93-115.	1.7	61
198	THE NATURAL NEST AND NEST DENSITY OF THE AFRICANIZED HONEY BEE (HYMENOPTERA, APIDAE) NEAR TAPACHULA, CHIAPAS, MEXICO. Canadian Entomologist, 1991, 123, 353-359.	0.8	39

#	Article	IF	CITATIONS
199	Assessment of queen mating frequency by workers in social hymenoptera. Journal of Theoretical Biology, 1990, 142, 87-93.	1.7	20
200	The Population Density of Feral Colonies of Honey Bees (Hymenoptera: Apidae) in a City in Upstate New York. Journal of Economic Entomology, 1990, 83, 81-83.	1.8	18
201	Importance of the Sting in the Evolution of Sociality in the Hymenoptera. Annals of the Entomological Society of America, 1989, 82, 1-5.	2.5	24
202	Worker policing in the honeybee. Nature, 1989, 342, 796-797.	27.8	538
203	Helping behaviour, reproductive value, and the future component of indirect fitness. Animal Behaviour, 1989, 38, 331-343.	1.9	67
204	Honeybee swarms accept bait hives contaminated with American foulbrood disease. Ecological Entomology, 1989, 14, 475-478.	2.2	13
205	Induction of Premature Honey Bee (Hymenoptera: Apidae) Flight by Juvenile Hormone Analogs Administered Orally or Topically. Journal of Economic Entomology, 1987, 80, 784-787.	1.8	42