Chunnong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/394976/publications.pdf Version: 2024-02-01

		3515	718
318	64,662	90	252
papers	citations	h-index	g-index
323	323	323	18398
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
14	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
15	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	8.1	971
16	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
17	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
18	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898

#	Article	IF	CITATIONS
19	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn> 150 </mml:mn> <mml:mtext>  </mml:mtext> a€‰   a€‰ a€ <td>mlææext></td><td><n&æk:msub></td></mml:mrow>	ml ææ ext>	< n&æk :msub>
20	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
21	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
22	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
23	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
24	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6.5	716
25	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
26	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
27	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
28	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
29	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
30	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
31	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
32	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
33	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
34	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
35	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
36	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315

#	Article	IF	CITATIONS
37	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
38	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
39	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
40	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
41	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
42	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
43	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
44	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
45	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
46	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
47	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
48	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
49	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	1.6	160
50	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
51	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
52	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
53	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
54	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	1.6	143

#	Article	IF	CITATIONS
55	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
56	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
57	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
58	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	1.6	128
59	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	1.6	126
60	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
61	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
62	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	1.6	121
63	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	1.6	120
64	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	1.6	120
65	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	0.7	120
66	A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 2020, 37, 165003.	1.5	120
67	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
68	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
69	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia, 2020, 37, .	1.3	114
70	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
71	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	1.6	110
72	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109

#	Article	IF	CITATIONS
73	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
74	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
75	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
76	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	105
77	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	1.6	104
78	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
79	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
80	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
81	Proposal for gravitational-wave detection beyond the standard quantum limit through EPRÂentanglement. Nature Physics, 2017, 13, 776-780.	6.5	101
82	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
83	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
84	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
85	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
86	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
87	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
88	Parametric Instabilities and Their Control in Advanced Interferometer Gravitational-Wave Detectors. Physical Review Letters, 2005, 94, 121102.	2.9	91
89	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
90	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	1.6	90

#	Article	IF	CITATIONS
91	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
92	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
93	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
94	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
95	Observation of Parametric Instability in Advanced LIGO. Physical Review Letters, 2015, 114, 161102.	2.9	87
96	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
97	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
98	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
99	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
100	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
101	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	2.9	83
102	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	1.6	83
103	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	1.6	79
104	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	1.5	78
105	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	1.6	78
106	Exploring the sensitivity of gravitational wave detectors to neutron star physics. Physical Review D, 2019, 99, .	1.6	78
107	Detection of gravitational waves. Reports on Progress in Physics, 2000, 63, 1317-1427.	8.1	77
108	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77

#	Article	IF	CITATIONS
109	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
110	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
111	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
112	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
113	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
114	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
115	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
116	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	2.9	69
117	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
118	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
119	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
120	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
121	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
122	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
123	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
124	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
125	Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters. Physical Review Letters, 2015, 115, 211104.	2.9	65
126	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65

#	Article	IF	CITATIONS
127	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
128	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
129	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
130	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
131	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	1.6	60
132	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
133	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	1.6	60
134	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
135	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
136	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
137	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
138	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
139	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
140	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
141	Multiple modes contributions to parametric instabilities in advanced laser interferometer gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 354, 360-365.	0.9	54
142	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	1.6	54
143	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	1.6	54
144	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54

#	Article	IF	CITATIONS
145	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
146	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
147	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
148	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn></mml:math> hypert of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .	flare	51
149	Narrowing the Filter-Cavity Bandwidth in Gravitational-Wave Detectors via Optomechanical Interaction. Physical Review Letters, 2014, 113, 151102.	2.9	51
150	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
151	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
152	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
153	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
154	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
155	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	1.6	45
156	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	1.6	45
157	Observation of Gravitational Waves from a Binary Black Hole Merger. , 2017, , 291-311.		45
158	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
159	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
160	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
161	Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments. Physical Review Letters, 2009, 102, 243902.	2.9	41
162	Compensation of Strong Thermal Lensing in High-Optical-Power Cavities. Physical Review Letters, 2006, 96, 231101.	2.9	40

#	Article	IF	CITATIONS
163	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
164	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
165	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	1.6	38
166	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
167	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters. 2019. 122. 061104.</mml:math 	2.9	36
168	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	1.6	35
169	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
170	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
171	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
172	Observation of three-mode parametric interactions in long optical cavities. Physical Review A, 2008, 78, .	1.0	33
173	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	32
174	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
175	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	2.9	32
176	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
177	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
178	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
179	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94,	1.6	31
180	Comparison of parametric instabilities for different test mass materials in advanced gravitational wave interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 419-426	0.9	30

#	Article	IF	CITATIONS
181	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
182	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
183	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
184	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
185	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
186	Parametric instabilities in advanced gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 205019.	1.5	28
187	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
188	5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors. Optics Letters, 2020, 45, 4911.	1.7	28
189	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
190	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	26
191	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
192	Gravitational wave detectors with broadband high frequency sensitivity. Communications Physics, 2021, 4, .	2.0	26
193	Suppression of parametric instabilities in future gravitational wave detectors using damping rings. Classical and Quantum Gravity, 2009, 26, 135012.	1.5	25
194	Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373.	0.3	24
195	Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions. Physical Review A, 2009, 79, .	1.0	24
196	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	2.9	24
197	Thermal tuning of optical cavities for parametric instability control. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1336.	0.9	23
198	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	23

#	Article	IF	CITATIONS
199	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	1.5	22
200	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
201	The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO. Journal of Physics: Conference Series, 2008, 122, 012001.	0.3	21
202	Strategies for the control of parametric instability in advanced gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 015002.	1.5	21
203	Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors. Physical Review D, 2011, 83, .	1.6	21
204	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
205	Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors. Physical Review A, 2008, 77, .	1.0	20
206	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	1.5	20
207	Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation. Physical Review D, 2015, 91, .	1.6	20
208	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
209	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893.	1.5	19
210	Thermal lensing compensation for AIGO high optical power test facility. Classical and Quantum Gravity, 2004, 21, S903-S908.	1.5	19
211	Observation of three-mode parametric instability. Physical Review A, 2015, 91, .	1.0	19
212	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
213	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
214	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
215	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
216	Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency. Physical Review A, 2014, 89, .	1.0	16

#	Article	IF	CITATIONS
217	Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors. Applied Physics B: Lasers and Optics, 2003, 77, 409-414.	1.1	15
218	The light-cone theorem. Classical and Quantum Gravity, 2009, 26, 135011.	1.5	15
219	Vehicle-induced seismic effects at a gravitational wave observatory. Review of Scientific Instruments, 2003, 74, 4846-4854.	0.6	14
220	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	1.5	14
221	Direct measurement of absorption-induced wavefront distortion in high optical power systems. Applied Optics, 2009, 48, 355.	2.1	14
222	Quantum noise of a white-light cavity using a double-pumped gain medium. Physical Review A, 2015, 92, .	1.0	14
223	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
224	An experiment to investigate optical spring parametric instability. Classical and Quantum Gravity, 2004, 21, S1253-S1258.	1.5	12
225	High-sensitivity three-mode optomechanical transducer. Physical Review A, 2011, 84, .	1.0	12
226	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
227	Optical design of a high power mode-cleaner for AIGO. General Relativity and Gravitation, 2005, 37, 1609-1619.	0.7	11
228	Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system. Review of Scientific Instruments, 2009, 80, 114502.	0.6	11
229	Three-mode optoacoustic parametric interactions with a coupled cavity. Physical Review A, 2008, 78, .	1.0	10
230	Pump RIN coupling to frequency noise of a polarization-maintaining 2 Âμm single frequency fiber laser. Optics Express, 2021, 29, 3221.	1.7	10
231	Rayleigh scattering, absorption, and birefringence of large-size bulk single-crystal sapphire. Applied Optics, 2006, 45, 2631.	2.1	9
232	Compact vibration isolation and suspension for Australian International Gravitational Observatory: Performance in a 72 m Fabry Perot cavity. Review of Scientific Instruments, 2009, 80, 114501.	0.6	9
233	Testing the suppression of opto-acoustic parametric interactions using optical feedback control. Classical and Quantum Gravity, 2010, 27, 084028.	1.5	9
234	Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1970-1973.	0.9	9

#	Article	IF	CITATIONS
235	Time evolution of parametric instability in large-scale gravitational-wave interferometers. Physical Review D, 2014, 90, .	1.6	9
236	Towards thermal noise free optomechanics. Journal Physics D: Applied Physics, 2016, 49, 455104.	1.3	9
237	Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging. Classical and Quantum Gravity, 2004, 21, S1139-S1144.	1.5	8
238	AIGO High Performance Compact Vibration Isolation System. Journal of Physics: Conference Series, 2006, 32, 111-116.	0.3	8
239	Enhancement and suppression of opto-acoustic parametric interactions using optical feedback. Physical Review A, 2010, 81, .	1.0	8
240	Linear negative dispersion with a gain doublet via optomechanical interactions. Optics Letters, 2015, 40, 2337.	1.7	8
241	A laser walk-off sensor for high-precision low-frequency rotation measurements. Review of Scientific Instruments, 2019, 90, 045005.	0.6	8
242	A multi-orientation low-frequency rotational accelerometer. Review of Scientific Instruments, 2021, 92, 064503.	0.6	8
243	Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1. General Relativity and Gravitation, 2005, 37, 1581-1589.	0.7	7
244	Feedback control of thermal lensing in a high optical power cavity. Review of Scientific Instruments, 2008, 79, 104501.	0.6	7
245	Observation of optical torsional stiffness in a high optical power cavity. Applied Physics Letters, 2009, 94, 081105.	1.5	7
246	Application of new pre-isolation techniques to mode cleaner design. Classical and Quantum Gravity, 2004, 21, S951-S958.	1.5	6
247	Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 1-6.	0.9	6
248	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	1.5	6
249	Spectroscopy of thermally excited acoustic modes using three-mode opto-acoustic interactions in a thermally tuned Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2702-2708.	0.9	6
250	High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers. Journal of Applied Physics, 2013, 114, .	1.1	6
251	Ultra-low dissipation resonators for improving the sensitivity of gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2174-2180.	0.9	6
252	Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4385-4395.	1.6	6

#	Article	IF	CITATIONS
253	Radiation pressure actuation of test masses. Classical and Quantum Gravity, 2004, 21, S875-S880.	1.5	5
254	Control of pre-isolators for gravitational wave detection. Classical and Quantum Gravity, 2004, 21, S1015-S1022.	1.5	5
255	Alignment locking to suspended Fabry-Perot cavity. General Relativity and Gravitation, 2005, 37, 1601-1608.	0.7	5
256	Preliminary investigation on a passive method for parametric instability control in advanced gravitational wave detectors. Journal of Physics: Conference Series, 2006, 32, 251-258.	0.3	5
257	Rayleigh scattering in fused silica samples for gravitational wave detectors. Optics Communications, 2011, 284, 4732-4737.	1.0	5
258	Implementation of electrostatic actuators for suspended test mass control. Classical and Quantum Gravity, 2004, 21, S977-S983.	1.5	4
259	The study of growth defects in sapphire by laser Rayleigh scattering imaging. Journal of Optics, 2004, 6, 635-639.	1.5	4
260	Demonstration of low power radiation pressure actuation for control of test masses. Review of Scientific Instruments, 2005, 76, 036107.	0.6	4
261	Optical design of the proposed Australian International Gravitational Observatory. Optics Express, 2009, 17, 2149.	1.7	4
262	Thermal tuning the optical cavity for 3 mode interaction studies using a <i>CO</i> ₂ laser. Journal of Physics: Conference Series, 2012, 363, 012018.	0.3	4
263	Study of parametric instability in gravitational wave detectors with silicon test masses. Classical and Quantum Gravity, 2017, 34, 055006.	1.5	4
264	Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector. Review of Scientific Instruments, 2018, 89, 074501.	0.6	4
265	Automatic Rayleigh scattering mapping system for optical quality evaluation of test masses for gravity wave detectors. Review of Scientific Instruments, 2005, 76, 015104.	0.6	3
266	Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors. Journal of Physics: Conference Series, 2006, 32, 282-287.	0.3	3
267	THE AIGO PROJECT. International Journal of Modern Physics D, 2011, 20, 2087-2092.	0.9	3
268	Three mode interactions as a precision monitoring tool for advanced laser interferometers. Classical and Quantum Gravity, 2014, 31, 185003.	1.5	3
269	Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators. Applied Optics, 2014, 53, 841.	0.9	3
270	Three mode interaction noise in laser interferometer gravitational wave detectors. Classical and Quantum Gravity, 2014, 31, 145002.	1.5	3

#	Article	IF	CITATIONS
271	Angular instability in high optical power suspended cavities. Review of Scientific Instruments, 2018, 89, 124503.	0.6	3
272	Suppression of thermal transients in advanced LIGO interferometers using CO ₂ laser preheating. Classical and Quantum Gravity, 2018, 35, 115006.	1.5	3
273	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	1.3	2
274	Non-contacting actuation by radiation powered telemetry system. Classical and Quantum Gravity, 2004, 21, S1023-S1029.	1.5	2
275	High mechanical quality factor of calcium fluoride (CaF2) at room temperature. EPJ Applied Physics, 2005, 30, 189-192.	0.3	2
276	Superiority of sapphire over silicon test masses regarding thermal noise and thermal lensing for laser interferometers with transmissive optics. Journal of Physics: Conference Series, 2006, 32, 404-412.	0.3	2
277	Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers. Journal of Physics: Conference Series, 2006, 32, 457-463.	0.3	2
278	Identifying deterministic signals in simulated gravitational wave data: algorithmic complexity and the surrogate data method. Classical and Quantum Gravity, 2006, 23, 1801-1814.	1.5	2
279	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
280	Extraction of energy from gravitational waves by laser interferometer detectors. Classical and Quantum Gravity, 2015, 32, 015003.	1.5	2
281	Preventing transient parametric instabilities in high power gravitational wave detectors using thermal transient compensation. Classical and Quantum Gravity, 2017, 34, 145014.	1.5	2
282	Broadband sensitivity improvement via coherent quantum feedback with PT-symmetry. , 2021, , .		2
283	Two dimensional photonic crystal angle sensor design. Optics Express, 2021, 29, 15413.	1.7	2
284	Revealing optical loss from modal frequency degeneracy in a long optical cavity. Optics Express, 2021, 29, 23902.	1.7	2
285	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
286	Operation of an 8 m suspended Michelson interferometer. Review of Scientific Instruments, 1998, 69, 2773-2776.	0.6	1
287	Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , .		1
288	Telemetry system driven by radiation power for use in gravitational wave detectors. Review of Scientific Instruments, 2005, 76, 084503.	0.6	1

#	Article	IF	CITATIONS
289	Scattering in sapphire test masses for gravitational wave detectors. Journal of Optics, 2009, 11, 125205.	1.5	1
290	Study of three-mode parametric instability. Journal of Physics: Conference Series, 2010, 228, 012025.	0.3	1
291	Three-mode opto-acoustic interactions in optical cavities: introducing the three-mode opto-acoustic parametric amplifier. Proceedings of SPIE, 2010, , .	0.8	1
292	Vacuum control system for the AIGO gravitational wave detector. Vacuum, 2010, 85, 176-179.	1.6	1
293	CONTROLLING INSTABILITIES IN HIGH OPTICAL POWER INTERFEROMETERS. International Journal of Modern Physics D, 2011, 20, 2069-2074.	0.9	1
294	Thermal modulation for suppression of parametric instability in advanced gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 135001.	1.5	1
295	First direct detection of gravitational waves. National Science Review, 2017, 4, 681-682.	4.6	1
296	Contoured thermal deformation of mirror surface for detuning parametric instability in an optical cavity. Classical and Quantum Gravity, 2020, 37, 125003.	1.5	1
297	Designing arm cavities free of parametric instability for gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 075015.	1.5	1
298	Double end-mirror sloshing cavity for optical dilution of thermal noise in mechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1643.	0.9	1
299	Cat-flap micro-pendulum for low noise optomechanics. Journal Physics D: Applied Physics, 2021, 54, 035104.	1.3	1
300	Observing the optical modes of parametric instability. Optics Letters, 2022, 47, 1685.	1.7	1
301	Parametric instability in the neutron star extreme matter observatory. Classical and Quantum Gravity, 2022, 39, 085007.	1.5	1
302	ACIGA: status report. , 2003, , .		0
303	Laser Interferometer Gravitational Wave Detectors—the Challenges. AIP Conference Proceedings, 2005, , .	0.3	0
304	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	1.6	0
305	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
306	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	1.6	0

#	Article	IF	CITATIONS
307	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
308	The Science Benefits of AIGOâ \in "a southern hemisphere interferometric gravitational wave detector. , 2010, , .		0
309	NOISE PERFORMANCE OF A 72 m SUSPENDED FABRY–PÉROT CAVITY. International Journal of Modern Physics D, 2011, 20, 2063-2067.	0.9	0
310	Gravitational waves. , 0, , 3-15.		0
311	Gravitational wave detectors. , 0, , 42-70.		0
312	Stabilising interferometers against high optical power effects. , 0, , 244-258.		0
313	ET: A third generation observatory. , 0, , 298-316.		0
314	The development of ground based gravitational wave astronomy and opportunities for Australia–China collaboration. International Journal of Modern Physics A, 2015, 30, 1545019.	0.5	0
315	The Asia-Australia Gravitational Wave Detector Concept. , 2018, , .		0
316	2 µm ultra-low relative intensity noise and frequency noise of single frequency fiber laser for next-generation gravitational wave detectors. , 2021, , .		0
317	Tilt interferometer for detecting gravitational wave signals at high frequencies. , 2019, , .		0
318	Optimization of pump scheme for low frequency noise 2 μm polarization-maintaining single frequency fiber laser. , 2020, , .		0