Manuela Rueda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949486/publications.pdf

Version: 2024-02-01

623734 580821 51 792 14 25 citations g-index h-index papers 52 52 52 669 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. International Journal of Pharmaceutics, 2022, 619, 121691.	5.2	10
2	Cholesterol Levels Affect the Performance of AuNPs-Decorated Thermo-Sensitive Liposomes as Nanocarriers for Controlled Doxorubicin Delivery. Pharmaceutics, 2021, 13, 973.	4.5	7
3	Mixed monolayer of a nucleolipid and a phospholipid has improved properties for spectroelectrochemical sensing of complementary nucleobases. Journal of Electroanalytical Chemistry, 2021, 896, 115120.	3.8	2
4	Electrostatics affects formation of Watson-Crick complex between DNA bases in monolayers of nucleolipids deposited at a gold electrode surface. Electrochimica Acta, 2021, 390, 138816.	5.2	3
5	Molecular recognition between guanine and cytosine-functionalized nucleolipid hybrid bilayers supported on gold (111) electrodes. Bioelectrochemistry, 2020, 132, 107416.	4.6	4
6	In situ surface enhanced infrared absorption spectroscopy study of the adsorption of cytosine on gold electrodes. Journal of Electroanalytical Chemistry, 2019, 849, 113362.	3.8	5
7	Electric-Field-Driven Molecular Recognition Reactions of Guanine with 1,2-Dipalmitoyl- <i>sn</i> - <i>glycero</i> -3-cytidine Monolayers Deposited on Gold Electrodes. Langmuir, 2019, 35, 9297-9307.	3.5	8
8	Spectroelectrochemical Characterization of 1,2-Dipalmitoyl- <i>sn</i> -glycero-3-cytidine Diphosphate Nucleolipid Monolayer Supported on Gold (111) Electrode. Langmuir, 2019, 35, 901-910.	3.5	5
9	In situ surface-enhanced infrared spectroscopy study of adenine-thymine co-adsorption on gold electrodes as a function of the pH. Journal of Electroanalytical Chemistry, 2018, 819, 417-427.	3.8	9
10	Electrochemical characterization of a mixed lipid monolayer supported on Au(111) electrodes with implications for doxorubicin delivery. Journal of Electroanalytical Chemistry, 2018, 815, 246-254.	3.8	10
11	Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes. Langmuir, 2016, 32, 3827-3835.	3.5	19
12	In situ Fourier transform infrared reflection absortion spectroscopy study of adenine adsorption on gold electrodes in basic media. Electrochimica Acta, 2014, 140, 476-481.	5.2	30
13	Evidences of adenine–thymine Interactions at gold electrodes interfaces as provided by in-situ infrared spectroscopy. Electrochemistry Communications, 2013, 35, 53-56.	4.7	11
14	Electrochemical STM study of the adsorption of adenine on $Au(111)$ electrodes. Electrochemistry Communications, 2013, 35, 61-64.	4.7	26
15	In situ infrared study of adenine adsorption on gold electrodes in acid media. Electrochimica Acta, 2012, 82, 534-542.	5. 2	22
16	Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion. Electrochimica Acta, 2011, 56, 7916-7922.	5.2	5
17	Phospholipid and gramicidin–phospholipid-coated mercury electrodes as model systems of partially blocked electrodes. Journal of Electroanalytical Chemistry, 2010, 649, 42-47.	3.8	10
18	Kinetics of adenine adsorption on Au(111) electrodes: An impedance study. Electrochimica Acta, 2010, 55, 3301-3306.	5.2	12

#	Article	IF	CITATIONS
19	Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study. Journal of Physical Chemistry C, 2009, 113, 18784-18794.	3.1	34
20	Adenine adsorption on $Au(111)$ and $Au(100)$ electrodes: Characterisation, surface reconstruction effects and thermodynamic study. Electrochimica Acta, 2007, 52, 3168-3180.	5.2	41
21	Study of multistep electrode processes in triple potential step techniques at spherical electrodes. Electrochemistry Communications, 2005, 7, 751-761.	4.7	7
22	Impedance study of thallous ion movement through gramicidin–dioleoylphosphatidylcholine self-assembled monolayers supported on mercury electrodes: the C–(C)–CE mechanism. Journal of Electroanalytical Chemistry, 2003, 550-551, 253-265.	3.8	13
23	Detection of Tl(I) Transport through a Gramicidinâ^'Dioleoylphosphatidylcholine Monolayer Using the Substrate Generationâ^'Tip Collection Mode of Scanning Electrochemical Microscopy. Langmuir, 2002, 18, 9453-9461.	3.5	39
24	Kinetics of condensation of adenine at the mercuryâ^£electrolyte interface. Journal of Electroanalytical Chemistry, 2001, 500, 356-364.	3.8	19
25	Impedance Study of Tl[sup +] Reduction at Gramicidin-Modified Dioleoylphosphatidylcholine-Coated Mercury Electrodes: Influence of Gramicidin Concentration and the Nature of the Supporting Electrolyte. Journal of the Electrochemical Society, 2001, 148, E139.	2.9	12
26	Salt and isotope effects upon a multistep electrode reaction: the reduction of nitromethane on mercury. Journal of Electroanalytical Chemistry, 1999, 474, 60-68.	3.8	3
27	Electrochemical Impedance Study of Tl+Reduction through Gramicidin Channels in Self-Assembled Gramicidin-Modified Dioleoylphosphatidylcholine Monolayers on Mercury Electrodes. Langmuir, 1999, 15, 3672-3678.	3.5	38
28	Impedance voltammetry of electro-dimerization mechanisms: Application to the reduction of the methyl viologen di-cation at mercury electrodes and aqueous solutions. Journal of Electroanalytical Chemistry, 1998, 443, 227-235.	3.8	15
29	Impedance measurements with phospholipid-coated mercury electrodes. Journal of Electroanalytical Chemistry, 1998, 454, 155-160.	3.8	25
30	Electroreduction of Nitromethane in Aqueous Solution. A Surface Indifferent Electrocatalytic Reaction. Journal of Physical Chemistry B, 1998, 102, 9187-9190.	2.6	10
31	Heterogeneous ECE Processes at Channel Electrodes:Â Voltammetric Waveshape Theory. Application to the Reduction of Nitromethane at Platinum Electrodes. Journal of Physical Chemistry B, 1998, 102, 6573-6578.	2.6	5
32	Heterogeneous ECE Processes at Channel Electrodes:  Analytical Theory. Distinguishing Hetero- and Homogeneous ECE Reactions. Journal of Physical Chemistry B, 1998, 102, 1515-1521.	2.6	14
33	Interfacial properties of hypoxanthine adsorbed at the mercuryelectrolyte interface. Journal of Electroanalytical Chemistry, 1997, 431, 257-267.	3.8	12
34	Electrode processes with coupled chemistry. Heterogeneous or homogeneous chemical reaction? The reduction of nitromethane in basic aqueous solution. Journal of Electroanalytical Chemistry, 1997, 437, 183-189.	3.8	15
35	Impedance voltammetric analysis of a consecutive E-C-E mechanism with two diffusing intermediates with application to the reduction of nitromethane. Journal of Electroanalytical Chemistry, 1996, 405, 1-14.	3.8	10
36	Mechanism of electrodimerization of pyrimidine on mercury from acid solutions. Journal of Electroanalytical Chemistry, 1995, 384, 123-130.	3.8	2

3

#	Article	IF	CITATIONS
37	Impedance analysis of the reduction of pyrimidine at a dropping mercury electrode. Journal of Electroanalytical Chemistry, 1994, 366, 127-134.	3.8	7
38	Impedance analysis of the reduction of pyrimidine at the dropping mercury electrode. Journal of Electroanalytical Chemistry, 1994, 371, 179-189.	3.8	8
39	Adsorption of pyrimidine at the mercury aqueous solution interface. Journal of Electroanalytical Chemistry, 1994, 379, 467-478.	3.8	5
40	Analysis of the faradaic admittance for an ECE mechanism in the case of non-Randles behaviour with frequency and its application to nitromethane reduction. Journal of Electroanalytical Chemistry, 1992, 327, 1-23.	3.8	10
41	Polarographic analysis of mechanisms involving competition between dimerization and electron transfer reactions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 281, 61-71.	0.1	3
42	The theory of the interfacial impedance in the case of the ECE and the ECCE mechanism and its application to the electrochemical reduction of nitromethane on mercury from aqueous 1 M KCl at pH 9. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 261, 23-38.	0.1	11
43	Electrodimerization of crotonic aldehyde in aqueous media on a mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 239, 239-251.	0.1	5
44	Determination of paracetamol in tablets and blood plasma by differential pulse voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 1988, 6, 969-976.	2.8	14
45	Analysis of the interfacial admittance in the case of a two-step two-electron electrode reaction with a diffusing intermediate, with application to the reduction of pyrazine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 222, 45-68.	0.1	13
46	Adsorption of crotonaldehyde at the mercury/water interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 199, 415-429.	0.1	6
47	The coupling of the double-layer admittance and the faradaic admittance of a stepwise electrode reaction complicated by adsorption of the reactants with experimental verification on the reduction of pyrazine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 202, 271-297.	0.1	13
48	The reduction of Cr(III) in concentrated aqueous electrolytes at a DME. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 210, 111-126.	0.1	18
49	Adsorption of cinnamaldehyde at the mercury-water interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 178, 305-319.	0.1	10
50	The reduction of Cr3+ in NaClO4 solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 175, 251-262.	0.1	12
51	Oxidation of L-ascorbic acid on a gold electrode. Electrochimica Acta, 1978, 23, 419-424.	5. 2	145