Gobena Ameni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field evaluation of specific mycobacterial proteinâ€based skin test for the differentiation of <i>Mycobacterium bovisâ€</i> infected and Bacillus Calmette Guerinâ€vaccinated crossbred cattle in Ethiopia. Transboundary and Emerging Diseases, 2022, 69, .	3.0	6
2	Epidemiology of Avian Tuberculosis in Selected Districts of Oromia Region, Ethiopia. Veterinary Medicine International, 2022, 2022, 1-11.	1.5	0
3	Seroprevalence and Associated Risk Factors of Ovine Brucellosis in South Omo Zone, Southern Ethiopia. Infection and Drug Resistance, 2022, Volume 15, 387-398.	2.7	6
4	Utility of the Intradermal Skin Test in a Test-and-Cull Approach to Control Bovine Tuberculosis: A Pilot Study in Ethiopia. Frontiers in Veterinary Science, 2022, 9, 823365.	2.2	1
5	Spoligotyping of Clinical Isolates of Mycobacterium tuberculosis Complex Species in the Oromia Region of Ethiopia. Frontiers in Public Health, 2022, 10, 808626.	2.7	2
6	Traditional medicinal plants used in the treatment of tuberculosis in Ethiopia: A systematic review. Heliyon, 2022, 8, e09478.	3.2	11
7	Spoligotype analysis of <i>Mycobacterium bovis</i> isolates from cattle and assessment of zoonotic <scp>TB</scp> transmission among individuals working in bovine <scp>TB</scp> â€infected dairy farms in Ethiopia. Zoonoses and Public Health, 2022, 69, 663-672.	2.2	2
8	A case of early neonate bovine tuberculosis in Ethiopia. Clinical Case Reports (discontinued), 2021, 9, 487-490.	0.5	2
9	Poultry disease occurrences and their impacts in Ethiopia. Tropical Animal Health and Production, 2021, 53, 54.	1.4	9
10	Epidemiology of Bovine Tuberculosis and Its Zoonotic Implication in Addis Ababa Milkshed, Central Ethiopia. Frontiers in Veterinary Science, 2021, 8, 595511.	2.2	4
11	A Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good?. Frontiers in Veterinary Science, 2021, 8, 637580.	2.2	19
12	Phenotypic and genotypic drug sensitivity profiles of Mycobacterium tuberculosis infection and associated factors in northeastern Ethiopia. BMC Infectious Diseases, 2021, 21, 261.	2.9	8
13	Small Ruminant Brucella Sero-prevalence and potential risk factor at Dallo-Manna and HarannaBulluk Districts of Bale Zone, Oromia regional state, Ethiopia. Ethiopian Veterinary Journal, 2021, 25, 77-95.	0.4	1
14	Population structure and transmission of Mycobacterium bovis in Ethiopia. Microbial Genomics, 2021, 7, .	2.0	9
15	Drug Resistance Pattern of M. tuberculosis Complex in Oromia Region of Ethiopia. Infection and Drug Resistance, 2021, Volume 14, 1679-1689.	2.7	1
16	Detection of Mycobacterium tuberculosis complex DNA in CD34-positive peripheral blood mononuclear cells of asymptomatic tuberculosis contacts: an observational study. Lancet Microbe, The, 2021, 2, e267-e275.	7.3	38
17	Poultry health services in Ethiopia: availability of diagnostic, clinical, and vaccination services. Poultry Science, 2021, 100, 101023.	3.4	8
18	The variable prevalence of bovine tuberculosis among dairy herds in Central Ethiopia provides opportunities for targeted intervention. PLoS ONE, 2021, 16, e0254091.	2.5	9

#	Article	IF	CITATIONS
19	Evaluation of the Efficacy of BCG in Protecting Against Contact Challenge With Bovine Tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia. Frontiers in Veterinary Science, 2021, 8, 702402.	2.2	11
20	Diabetes mellitus and HIV infection among active tuberculosis patients in Northwest Ethiopia: health facility-based cross-sectional study. Tropical Medicine and Health, 2021, 49, 68.	2.8	8
21	Cellular and Cytokine Responses in Lymph Node Granulomas of Bacillus Calmette Guérin (BCG)-Vaccinated and Non-vaccinated Cross-Breed Calves Naturally Infected With Mycobacterium bovis. Frontiers in Veterinary Science, 2021, 8, 698800.	2.2	1
22	Pathology of Bovine Tuberculosis in Three Breeds of Dairy Cattle and Spoligotyping of the Causative Mycobacteria in Ethiopia. Frontiers in Veterinary Science, 2021, 8, 715598.	2.2	2
23	A Cross-sectional Study on the Magnitude of undernutrition in Tuberculosis Patients in the Oromia Region of Ethiopia. Journal of Multidisciplinary Healthcare, 2021, Volume 14, 2421-2428.	2.7	2
24	Genetic Diversity and Acquired Drug Resistance Mutations Detected by Deep Sequencing in Virologic Failures among Antiretroviral Treatment Experienced Human Immunodeficiency Virus-1 Patients in a Pastoralist Region of Ethiopia. Infection and Drug Resistance, 2021, Volume 14, 4833-4847.	2.7	2
25	Epidemiology of Epizootic Lymphangitis Among Carthorses in Ethiopia. Frontiers in Veterinary Science, 2021, 8, 762937.	2.2	6
26	Molecular epidemiology of clinical Mycobacterium tuberculosis complex isolates in South Omo, Southern Ethiopia. BMC Infectious Diseases, 2020, 20, 750.	2.9	12
27	Differences in plasma proteomes for active tuberculosis, latent tuberculosis and non-tuberculosis mycobacterial lung disease patients with and without ESAT-6/CFP10 stimulation. Proteome Science, 2020, 18, 10.	1.7	5
28	InÂVitro Evaluation of the Effects of Selected Plants on the Growth of the Mycelial Form of Histoplasma capsulatum Variety farciminosum in Ethiopia. Journal of Equine Veterinary Science, 2020, 91, 103139.	0.9	3
29	Tuberculosis in small ruminants and dromedary camels in Ethiopia: A systematic review and meta-analysis. Preventive Veterinary Medicine, 2020, 185, 105181.	1.9	1
30	Brucellosis in ruminants andÂpastoralists in Borena, Southern Ethiopia. PLoS Neglected Tropical Diseases, 2020, 14, e0008461.	3.0	21
31	Cellular and Cytokine Responses in the Granulomas of Asymptomatic Cattle Naturally Infected with Mycobacterium bovis in Ethiopia. Infection and Immunity, 2020, 88, .	2.2	6
32	Genotype Diversity of Mycobacterium bovis and Pathology of Bovine Tuberculosis in Selected Emerging Dairy Regions of Ethiopia. Frontiers in Veterinary Science, 2020, 7, 553940.	2.2	4
33	Epidemiology of epizootic lymphangitis of carthorses in northern Ethiopia using conventional diagnostic methods and nested polymerase chain reaction. BMC Veterinary Research, 2020, 16, 375.	1.9	14
34	Prevalence of latent tuberculosis infection and associated risk factors in prison in East Wollega Zone of western Ethiopia. PLoS ONE, 2020, 15, e0233314.	2.5	14
35	Targeted-Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis Cultures Using Two Commercial Sequencing Platforms: Comparison of Analytical and Diagnostic Performance, Turnaround Time, and Cost. Clinical Chemistry, 2020, 66, 809-820.	3.2	25
36	Tuberculosis knowledge and attitude among non-health science university students needs attention: a cross-sectional study in three Ethiopian universities. BMC Public Health, 2020, 20, 631.	2.9	6

#	Article	IF	CITATIONS
37	An African origin for Mycobacterium bovis. Evolution, Medicine and Public Health, 2020, 2020, 49-59.	2.5	42
38	Low Prevalence of <i>Mycobacterium bovis</i> in Tuberculosis Patients, Ethiopia. Emerging Infectious Diseases, 2020, 26, 613-615.	4.3	3
39	Study on the prevalence and risk factors of bovine tuberculosis in dairy cattle in Adama city, central Ethiopia. Ethiopian Veterinary Journal, 2020, 24, .	0.4	2
40	Evaluation of the Control Options of Bovine Tuberculosis in Ethiopia Using a Multi-Criteria Decision Analysis. Frontiers in Veterinary Science, 2020, 7, 586056.	2.2	3
41	Prevalence and risk factors of swine tuberculosis in central Ethiopia. Ethiopian Veterinary Journal, 2020, 24, 16-34.	0.4	0
42	Smear positive tuberculosis and genetic diversity of M. tuberculosis isolates in individuals visiting health facilities in South Gondar Zone, northwest Ethiopia. PLoS ONE, 2019, 14, e0216437.	2.5	4
43	Network analysis of dairy cattle movement and associations with bovine tuberculosis spread and control in emerging dairy belts of Ethiopia. BMC Veterinary Research, 2019, 15, 262.	1.9	23
44	A defined antigen skin test for the diagnosis of bovine tuberculosis. Science Advances, 2019, 5, eaax4899.	10.3	39
45	Genetic diversity and drug susceptibility profiles of Mycobacterium tuberculosis obtained from Saint Peter's TB specialized Hospital, Ethiopia. PLoS ONE, 2019, 14, e0218545.	2.5	18
46	High helminthic co-infection in tuberculosis patients with undernutritional status in northeastern Ethiopia. Infectious Diseases of Poverty, 2019, 8, 88.	3.7	8
47	PFGE Xbal® Indistinguishable properties of Salmonella Kastrup and Salmonella Larochelle isolates at beef processing and distribution continuum. Ethiopian Veterinary Journal, 2019, 23, 1.	0.4	0
48	Monitoring quality indicators for the Xpert MTB/RIF molecular assay in Ethiopia. PLoS ONE, 2019, 14, e0225205.	2.5	13
49	Utility of urine as a clinical specimen for the diagnosis of pulmonary tuberculosis in people living with HIV in Addis Ababa, Ethiopia. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2019, 17, 100125.	1.3	3
50	Isolation and identification of Brucella melitensis using bacteriological and molecular tools from aborted goats in the Afar region of north-eastern Ethiopia. BMC Microbiology, 2019, 19, 108.	3.3	21
51	Prevalence of bovine tuberculosis and its associated risk factors in the emerging dairy belts of regional cities in Ethiopia. Preventive Veterinary Medicine, 2019, 168, 81-89.	1.9	42
52	Molecular detection of Mycobacterium tuberculosis sensitivity to rifampicin and isoniazid in South Gondar Zone, northwest Ethiopia. BMC Infectious Diseases, 2019, 19, 343.	2.9	20
53	Tuberculosis at Farmer-Cattle Interface in the Rural Villages of South Gondar Zone of Northwest Ethiopia. Tuberculosis Research and Treatment, 2019, 2019, 1-8.	0.6	7
54	Evaluation of Mycobacterium tuberculosis lipoarabinomannan antigen assay and rapid serology blood test for the diagnosis of bovine tuberculosis in Ethiopia. BMC Veterinary Research, 2019, 15, 359.	1.9	2

#	Article	IF	CITATIONS
55	Infectious and parasitic diseases of poultry in Ethiopia: a systematic review and meta-analysis. Poultry Science, 2019, 98, 6452-6462.	3.4	7
56	Spoligotypeâ€based population structure of <i>Mycobacterium tuberculosis</i> in the Jimma Zone, southwest Ethiopia. MicrobiologyOpen, 2019, 8, e00744.	3.0	3
57	Experimental infection of cattle with Mycobacterium tuberculosis isolates shows the attenuation of the human tubercle bacillus for cattle. Scientific Reports, 2018, 8, 894.	3.3	52
58	Potential Immunological Biomarkers for Detection of Mycobacterium tuberculosis Infection in a Setting Where M. tuberculosis Is Endemic, Ethiopia. Infection and Immunity, 2018, 86, .	2.2	12
59	Spoligotyping based genetic diversity of Mycobacterium tuberculosis in Ethiopia: a systematic review. BMC Infectious Diseases, 2018, 18, 140.	2.9	35
60	Latent tuberculosis infection and associated risk indicators in pastoral communities in southern Ethiopia: a community based cross-sectional study. BMC Public Health, 2018, 18, 266.	2.9	16
61	Survey of Anaplasma phagocytophilum and Anaplasma sp. â€~Omatjenne' infection in cattle in Africa with special reference to Ethiopia. Parasites and Vectors, 2018, 11, 162.	2.5	13
62	Appraisal of interpretation criteria for the single intra-dermal comparative cervical tuberculin test for the diagnosis of tuberculosis in dromedary camels in Ethiopia. Tropical Animal Health and Production, 2018, 50, 1665-1670.	1.4	3
63	Antimicrobial resistance and genotypic profiles of Salmonella Saintpaul isolated along beef processing and distribution continuum. Heliyon, 2018, 4, e01025.	3.2	4
64	Spoligotyping-Based Genetic Diversity of Mycobacterium tuberculosis in Ethiopia: A Systematic Review. American Journal of Clinical Pathology, 2018, 150, S125-S125.	0.7	0
65	Brucellosis in the Addis Ababa dairy cattle: the myths and the realities. BMC Veterinary Research, 2018, 14, 396.	1.9	18
66	Phenotypic and genotypic drug sensitivity of Mycobacterium tuberculosis complex isolated from South Omo Zone, Southern Ethiopia. Infection and Drug Resistance, 2018, Volume 11, 1581-1589.	2.7	16
67	Molecular epidemiology and drug resistance patterns of Mycobacterium tuberculosis complex isolates from university students and the local community in Eastern Ethiopia. PLoS ONE, 2018, 13, e0198054.	2.5	11
68	Genotyping of mycobacterium tuberculosis isolated from pulmonary tuberculosis patients among people living with HIV in Addis Ababa: Cross-sectional study. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2018, 12, 34-37.	1.3	2
69	Endometrial tuberculosis among patients undergoing endometrial biopsy at Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. BMC Infectious Diseases, 2018, 18, 304.	2.9	7
70	S-Trap, an Ultrafast Sample-Preparation Approach for Shotgun Proteomics. Journal of Proteome Research, 2018, 17, 2917-2924.	3.7	215
71	Molecular epidemiology and drug sensitivity pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in and around Ambo Town, Central Ethiopia. PLoS ONE, 2018, 13, e0193083.	2.5	17
72	Preliminary investigation of the transmission of tuberculosis between farmers and their cattle in smallholder farms in northwestern Ethiopia: a cross-sectional study. BMC Research Notes, 2017, 10, 31.	1.4	25

#	Article	IF	CITATIONS
73	Concentration of fine needle aspirates similar to molecular method improves sensitivity of the diagnosis of tuberculous lymphadenitis in Addis Ababa, Ethiopia. BMC Infectious Diseases, 2017, 17, 77.	2.9	7
74	Bovine tuberculosis in Ethiopia: A systematic review and meta-analysis. Preventive Veterinary Medicine, 2017, 147, 149-157.	1.9	62
75	Molecular typing of Mycobacterium tuberculosis complex isolated from pulmonary tuberculosis patients in central Ethiopia. BMC Infectious Diseases, 2017, 17, 184.	2.9	21
76	Detection of Mycobacterium tuberculosis from the stool of HIV sero-positive individuals suspected of pulmonary tuberculosis. PLoS ONE, 2017, 12, e0177529.	2.5	13
77	Nontuberculosis mycobacteria are the major causes of tuberculosis like lesions in cattle slaughtered at Bahir Dar Abattoir, northwestern Ethiopia. BMC Veterinary Research, 2017, 13, 237.	1.9	18
78	Performance of MTBDRplus assay in detecting multidrug resistant tuberculosis at hospital level. BMC Research Notes, 2017, 10, 661.	1.4	8
79	A retrospective study on tuberculosis treatment outcomes at Jinka General Hospital, southern Ethiopia. BMC Research Notes, 2017, 10, 680.	1.4	24
80	Treatment Outcomes of Tuberculosis Patients at Bale Robe Hospital Oromia Regional State, Ethiopia: A Five Year Retrospective Study. Journal of Nursing & Care, 2017, 06, .	0.1	3
81	Evaluation of the GenoType MTBDRplus assay for detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis isolates in central Ethiopia. International Journal of Mycobacteriology, 2016, 5, 475-481.	0.6	24
82	Molecular detection of Anaplasma species in questing ticks (ixodids) in Ethiopia. Asian Pacific Journal of Tropical Disease, 2016, 6, 449-452.	0.5	4
83	Treatment Outcome of Tuberculosis Patients under Directly Observed Treatment Short Course and Factors Affecting Outcome in Southern Ethiopia: A Five-Year Retrospective Study. PLoS ONE, 2016, 11, e0150560.	2.5	79
84	Salmonella serovars along two beef chains in Ethiopia. Journal of Infection in Developing Countries, 2016, 10, 1168-1176.	1.2	9
85	Survival and predictors of mortality among HIV patients on anti-retroviral treatment at Jinka hospital, South Omo, Ethiopia. Epidemiology and Health, 2016, 38, e2016049.	1.9	26
86	Prevalence of bovine tuberculosis in beef feedlot of Borena cattle by using comparative intradermal skin test, Adama, Ethiopia. Ethiopian Veterinary Journal, 2016, 20, 17-29.	0.4	1
87	Admixture mapping of tuberculosis and pigmentation-related traits in an Africanââ,¬â€œEuropean hybrid cattle population. Frontiers in Genetics, 2015, 6, 210.	2.3	9
88	Genetic Diversity of <i>Mycobacterium tuberculosis</i> Complex Isolated from Tuberculosis Patients in Bahir Dar City and Its Surroundings, Northwest Ethiopia. BioMed Research International, 2015, 2015, 1-9.	1.9	17
89	Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa. Current Biology, 2015, 25, 3260-3266.	3.9	94
90	Microbiological Load and Zoonotic Agents in Beef Mortadella from Addis Ababa City Supermarkets. Journal of Food Protection, 2015, 78, 1043-1045.	1.7	6

#	Article	IF	CITATIONS
91	Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection. BMC Infectious Diseases, 2015, 15, 112.	2.9	46
92	Spoligotyping of Mycobacterium tuberculosis isolates from tuberculosis diagnosed patients at Dilla University Referral Hospital and other private clinics, Southern Ethiopia. Asian Pacific Journal of Tropical Disease, 2015, 5, 329-333.	0.5	3
93	Molecular typing and drug sensitivity testing of Mycobacterium tuberculosis isolated by a community-based survey in Ethiopia. BMC Public Health, 2015, 15, 751.	2.9	21
94	Prevalence and drug resistance profile of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients attending two public hospitals in East Gojjam zone, northwest Ethiopia. BMC Public Health, 2015, 15, 572.	2.9	51
95	A Preliminary Study on Molecular Characterization of Mycobacterium tuberculosis in Benishangul Gumuz Region, Western Ethiopia. British Microbiology Research Journal, 2015, 10, 1-10.	0.2	9
96	Microscopic examination and smear negative pulmonary tuberculosis in Ethiopia. Pan African Medical Journal, 2014, 19, 162.	0.8	16
97	Strain Diversity of <i>Mycobacterium tuberculosis</i> Isolates from Pulmonary Tuberculosis Patients in Afar Pastoral Region of Ethiopia. BioMed Research International, 2014, 2014, 1-12.	1.9	40
98	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	12.6	361
99	Molecular characterization of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in Felege Hiwot Referral Hospital, northwest Ethiopia. Journal of Microbiology, Immunology and Infection, 2014, 47, 333-338.	3.1	17
100	Drug Susceptibility Testing of Mycobacteria Isolated from Humans and Cattle from Selected Sites of Ethiopia. Journal of Tuberculosis Research, 2014, 02, 125-131.	0.2	0
101	Abattoir-based study on the epidemiology of caprine tuberculosis in Ethiopia using conventional and molecular tools. Acta Veterinaria Scandinavica, 2013, 55, 15.	1.6	16
102	Prevalence of tuberculosis in pigs slaughtered at two abattoirs in Ethiopia and molecular characterization of Mycobacterium tuberculosis isolated from tuberculous-like lesions in pigs. BMC Veterinary Research, 2013, 9, 97.	1.9	18
103	Treatment outcome of tuberculosis patients under directly observed treatment in Addis Ababa, Ethiopia. Brazilian Journal of Infectious Diseases, 2013, 17, 521-528.	0.6	68
104	Determinants of multidrug-resistant tuberculosis in patients who underwent first-line treatment in Addis Ababa: a case control study. BMC Public Health, 2013, 13, 782.	2.9	70
105	Community-based prevalence of undiagnosed mycobacterial diseases in the Afar Region, north-east Ethiopia. International Journal of Mycobacteriology, 2013, 2, 94-102.	0.6	7
106	Molecular typing of mycobacteria isolated from extrapulmonary tuberculosis patients at Debre Birhan Referral Hospital, central Ethiopia. Scandinavian Journal of Infectious Diseases, 2013, 45, 512-518.	1.5	18
107	Tuberculosis in dromedaries in eastern Ethiopia: Abattoir-based prevalence and molecular typing of its causative agents. Small Ruminant Research, 2013, 109, 188-192.	1.2	13
108	Mycobacterial Lineages Causing Pulmonary and Extrapulmonary Tuberculosis, Ethiopia. Emerging Infectious Diseases, 2013, 19, 460-463.	4.3	215

#	Article	IF	CITATIONS
109	In vitro Anti-mycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis and Mycobacterium bovis Strains. BMC Complementary and Alternative Medicine, 2013, 13, 291.	3.7	51
110	Transmission of Mycobacterium tuberculosis between Farmers and Cattle in Central Ethiopia. PLoS ONE, 2013, 8, e76891.	2.5	64
111	Association of the level of IFN-Â produced by T cells in response to Mycobacterium tuberculosis-specific antigens with the size of skin test indurations among individuals with latent tuberculosis in a highly tuberculosis-endemic setting. International Immunology, 2012, 24, 71-78.	4.0	5
112	T-Cell and Antibody Responses to Mycobacterial Antigens in Tuberculin Skin-Test-Positive <i>Bos indicus</i> and <i>Bos taurus</i> Cattle in Ethiopia. Veterinary Medicine International, 2012, 2012, 1-6.	1.5	3
113	Tuberculosis in Goats and Sheep in Afar Pastoral Region of Ethiopia and Isolation ofMycobacterium tuberculosisfrom Goat. Veterinary Medicine International, 2012, 2012, 1-8.	1.5	23
114	Evaluation of berries of Phytolacca dodecandra for growth inhibition of Histoplasma capsulatum var. farciminosum and treatment of cases of epizootic lymphangitis in Ethiopia. Asian Pacific Journal of Tropical Biomedicine, 2012, 2, 505-510.	1.2	15
115	Diagnostic and treatment delay among Tuberculosis patients in Afar Region, Ethiopia: A cross-sectional study. BMC Public Health, 2012, 12, 369.	2.9	76
116	The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 227-232.	1.6	92
117	Cytokine responses of Holstein and Sahiwal zebu derived monocytes after mycobacterial infection. Tropical Animal Health and Production, 2012, 44, 651-655.	1.4	10
118	Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia. Veterinary Journal, 2011, 188, 359-361.	1.7	83
119	Mortality and associated risk factors in a cohort of tuberculosis patients treated under DOTS programme in Addis Ababa, Ethiopia. BMC Infectious Diseases, 2011, 11, 127.	2.9	56
120	Community-based cross-sectional survey of latent tuberculosis infection in Afar pastoralists, Ethiopia, using QuantiFERON-TB Gold In-Tube and tuberculin skin test. BMC Infectious Diseases, 2011, 11, 89.	2.9	40
121	Knowledge of cervical tuberculosis lymphadenitis and its treatment in pastoral communities of the Afar region, Ethiopia. BMC Public Health, 2011, 11, 157.	2.9	11
122	Pathology of Camel Tuberculosis and Molecular Characterization of Its Causative Agents in Pastoral Regions of Ethiopia. PLoS ONE, 2011, 6, e15862.	2.5	51
123	Immune Response in Holstein-Zebu Cross and Zebu Calves Vaccinated with Bacillus Calmette-Guérin (BCG) at Bako Agricultural Research Centre, Western Ethiopia. Journal of Vaccines & Vaccination, 2011, 02, .	0.3	0
124	Comparison of different testing schemes to increase the detection Mycobacterium bovis infection in Ethiopian cattle. Tropical Animal Health and Production, 2010, 42, 375-383.	1.4	9
125	A cross-sectional study on bovine tuberculosis in Hawassa town and its surroundings, Southern Ethiopia. Tropical Animal Health and Production, 2010, 42, 915-920.	1.4	41
126	Knowledge and perception of pulmonary tuberculosis in pastoral communities in the middle and Lower Awash Valley of Afar region, Ethiopia. BMC Public Health, 2010, 10, 187.	2.9	62

#	Article	IF	CITATIONS
127	Performance of QuantiFERON-TB Gold In-Tube (QFTGIT) for the diagnosis of Mycobacterium tuberculosis (Mtb) infection in Afar Pastoralists, Ethiopia. BMC Infectious Diseases, 2010, 10, 354.	2.9	26
128	Field Evaluation of the Efficacy of <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin against Bovine Tuberculosis in Neonatal Calves in Ethiopia. Vaccine Journal, 2010, 17, 1533-1538.	3.1	72
129	IMMUNOGENICITY OF BACILLUS CALMETTE-GUÉRIN (BCG) IN BOVINE NEONATES UNDER TRADITIONAL FARMING IN CENTRAL ETHIOPIA. Journal of Immunoassay and Immunochemistry, 2010, 31, 160-168.	1.1	3
130	Vaccination of calves with Mycobacteria bovis Bacilli Calmete Guerin (BCG) induced rapid increase in the proportion of peripheral blood γδT cells. Veterinary Immunology and Immunopathology, 2009, 130, 251-255.	1.2	18
131	The Burden of Mycobacterial Disease in Ethiopian Cattle: Implications for Public Health. PLoS ONE, 2009, 4, e5068.	2.5	136
132	Equine histoplasmosis: Treatment trial in cart horses in Central Ethiopia. Tropical Animal Health and Production, 2008, 40, 407-411.	1.4	10
133	Bovine tuberculosis is more prevalent in cattle owned by farmers with active tuberculosis in central Ethiopia. Veterinary Journal, 2008, 178, 119-125.	1.7	60
134	Appraisal of Interpretation Criteria for the Comparative Intradermal Tuberculin Test for Diagnosis of Tuberculosis in Cattle in Central Ethiopia. Vaccine Journal, 2008, 15, 1272-1276.	3.1	65
135	High Prevalence and Increased Severity of Pathology of Bovine Tuberculosis in Holsteins Compared to Zebu Breeds under Field Cattle Husbandry in Central Ethiopia. Vaccine Journal, 2007, 14, 1356-1361.	3.1	167
136	Pathology and Clinical Manifestation of Epizootic Lymphangitis in Cart Mules in Ethiopia. Journal of Equine Science, 2007, 18, 1-4.	0.8	9
137	Histofarcin test for the diagnosis of epizootic lymphangitis in Ethiopia: development, optimisation, and validation in the field. Veterinary Journal, 2006, 171, 358-362.	1.7	8
138	Epidemiology of equine histoplasmosis (epizootic lymphangitis) in carthorses in Ethiopia. Veterinary Journal, 2006, 172, 160-165.	1.7	37
139	Preliminary trial on the reproducibility of epizootic lymphangitis through experimental infection of two horses. Veterinary Journal, 2006, 172, 553-555.	1.7	9
140	Cattle Husbandry in Ethiopia Is a Predominant Factor Affecting the Pathology of Bovine Tuberculosis and Gamma Interferon Responses to Mycobacterial Antigens. Vaccine Journal, 2006, 13, 1030-1036.	3.1	74
141	A cross-sectional study of epizootic lymphangitis in cart-mules in western Ethiopia. Preventive Veterinary Medicine, 2004, 66, 93-99.	1.9	23
142	Comparison between comparative tuberculin and gamma-interferon tests for the diagnosis of bovine tuberculosis in Ethiopia. Tropical Animal Health and Production, 2000, 32, 267-276.	1.4	27
143	Effect of Gastro-intestinal Parasitosis on Tuberculin Test for the Diagnosis of Bovine Tuberculosis. Journal of Applied Animal Research, 2000, 18, 221-224.	1.2	12
144	Retrospective longitudinal study on Canine and Feline Parvovirus Infections in Al Ain, United Arab Emirates. Emirates Journal of Food and Agriculture, 0, , 762.	1.0	0

#	Article	IF	CITATIONS
145	Equine Histoplasmosis in Ethiopia: Phylogenetic Analysis by Sequencing of the Internal Transcribed Spacer Region of rRNA Genes. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3