David S Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3948719/publications.pdf

Version: 2024-02-01

85 papers 3,231 citations

28 h-index 54 g-index

86 all docs 86 docs citations

86 times ranked 2535 citing authors

#	Article	IF	CITATIONS
1	Detection distances in desert dwelling, high duty cycle echolocators: A test of the foraging habitat hypothesis. PLoS ONE, 2022, 17, e0268138.	2.5	1
2	Geographic variation in the skulls of the horseshoe bats, Rhinolophus simulator and R. cf. simulator: Determining the relative contributions of adaptation and drift using geometric morphometrics. Ecology and Evolution, 2021, 11, 15916-15935.	1.9	0
3	Compositional turnover in ecto- and endoparasite assemblages of an African bat, Miniopterus natalensis (Chiroptera, Miniopteridae): effects of hierarchical scale and host sex. Parasitology, 2020, 147, 1728-1742.	1.5	1
4	Faecal analyses and alimentary tracers reveal the foraging ecology of two sympatric bats. PLoS ONE, 2020, 15, e0227743.	2.5	7
5	The Behaviour and Vocalisations of Captive Geoffroy's Horseshoe Bats, Rhinolophus clivosus (Chiroptera: Rhinolophidae). Acta Chiropterologica, 2019, 20, 439.	0.6	1
6	It's not all about the Soprano: Rhinolophid bats use multiple acoustic components in echolocation pulses to discriminate between conspecifics and heterospecifics. PLoS ONE, 2018, 13, e0199703.	2.5	6
7	High Duty Cycle Echolocation May Constrain the Evolution of Diversity within Horseshoe Bats (Family: Rhinolophidae). Diversity, 2018, 10, 85.	1.7	11
8	The Relative Roles of Selection and Drift in Phenotypic Variation: Some Like It Hot, Some Like It Wet. , $2018, 215-237$.		2
9	To seek or speak? Dual function of an acoustic signal limits its versatility in communication. Animal Behaviour, 2017, 127, 135-152.	1.9	17
10	The relative contribution of drift and selection to phenotypic divergence: A test case using the horseshoe bats $\langle i \rangle$ Rhinolophus simulator $\langle i \rangle$ and $\langle i \rangle$ Rhinolophus swinnyi $\langle i \rangle$. Ecology and Evolution, 2017, 7, 4299-4311.	1.9	10
11	Environmental correlates of geographic divergence in a phenotypic trait: A case study using bat echolocation. Ecology and Evolution, 2017, 7, 7347-7361.	1.9	13
12	Thermoregulation by captive and free-ranging Egyptian rousette bats (Rousettus aegyptiacus) in South Africa. Journal of Mammalogy, 2017, 98, 572-578.	1.3	15
13	Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus). PLoS ONE, 2017, 12, e0187769.	2.5	22
14	Sensory Drive Mediated by Climatic Gradients Partially Explains Divergence in Acoustic Signals in Two Horseshoe Bat Species, Rhinolophus swinnyi and Rhinolophus simulator. PLoS ONE, 2016, 11, e0148053.	2.5	32
15	Predator–Prey Interactions: Co-evolution between Bats and Their Prey. Springer Briefs in Animal Sciences, 2016, , .	0.1	15
16	Bat Echolocation: Adaptations for Prey Detection and Capture. Springer Briefs in Animal Sciences, 2016, , 13-30.	0.1	5
17	Passive and Active Acoustic Defences of Prey Against Bat Predation. Springer Briefs in Animal Sciences, 2016, , 43-71.	0.1	O
18	Aerial Warfare: Have Bats and Moths Co-evolved?. Springer Briefs in Animal Sciences, 2016, , 73-87.	0.1	0

#	Article	IF	CITATIONS
19	Synthesis and Future Research. Springer Briefs in Animal Sciences, 2016, , 107-116.	0.1	О
20	Convergence as an Evolutionary Trade-off in the Evolution of Acoustic Signals: Echolocation in Horseshoe Bats as a Case Study., 2016,, 89-103.		4
21	Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution, 2016, 97, 196-212.	2.7	77
22	Bats and Water: Anthropogenic Alterations Threaten Global Bat Populations. , 2016, , 215-241.		48
23	Development and characterization of 10 microsatellite markers in the Cape horseshoe bat, Rhinolophus capensis (Chiroptera, Rhinolophidae) and cross-amplification in southern African Rhinolophus species. BMC Research Notes, 2015, 8, 477.	1.4	1
24	Echolocation in the bat, <i>Rhinolophus capensis</i> : the influence of clutter, conspecifics and prey on call design and intensity. Biology Open, 2015, 4, 693-701.	1.2	23
25	How and Why Overcome the Impediments to Resolution: Lessons from rhinolophid and hipposiderid Bats. Molecular Biology and Evolution, 2015, 32, 313-333.	8.9	82
26	Listening carefully: increased perceptual acuity for species discrimination in multispecies signalling assemblages. Animal Behaviour, 2015, 101, 141-154.	1.9	26
27	Retinoic acid-independent expression of Meis2 during autopod patterning in the developing bat and mouse limb. EvoDevo, 2015, 6, 6.	3.2	8
28	The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary tradeâ€off between masticatory and sensory functions of skulls in southern African Horseshoe bats (Rhinolophidae). Journal of Evolutionary Biology, 2014, 27, 2829-2840.	1.7	20
29	Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity. BMC Evolutionary Biology, 2014, 14, 60.	3.2	21
30	Factors Influencing the Emergence Times of sympatric Insectivorous Bat Species. Acta Chiropterologica, 2013, 15, 121-132.	0.6	26
31	Artificial wetlands and surrounding habitats provide important foraging habitat for bats in agricultural landscapes in the Western Cape, South Africa. Biological Conservation, 2013, 164, 30-38.	4.1	62
32	Phenotypic Convergence in Genetically Distinct Lineages of a Rhinolophus Species Complex (Mammalia,) Tj ETQc	10 0 0 rgB	T /9yerlock 10
33	Differences in the foraging behaviour of male and female Egyptian fruit bats (<i>Rousettus) Tj ETQq1 1 0.784314</i>	4 rgBT /Ov	erlock 10 Tf 5
34	The Divergence of Echolocation Frequency in Horseshoe Bats: Moth Hearing, Body Size or Habitat?. Journal of Mammalian Evolution, 2011, 18, 117-129.	1.8	28
35	The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia, 2011, 166, 493-506.	2.0	46
36	Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 435-446.	1.6	24

#	Article	IF	Citations
37	Molecular phylogenetics and historical biogeography of Rhinolophus bats. Molecular Phylogenetics and Evolution, 2010, 54, 1-9.	2.7	64
38	Evaluation of Maternal Features as Indicators of Asynchronous Embryonic Development in Miniopterus natalensis. Acta Chiropterologica, 2010, 12, 161-171.	0.6	9
39	The role of early development in mammalian limb diversification: A descriptive comparison of early limb development between the natal longâ€fingered bat (<i>Miniopterus natalensis</i>) and the mouse (<i>Mus musculus</i>). Developmental Dynamics, 2009, 238, 965-979.	1.8	40
40	The role of early development in mammalian limb diversification: A descriptive comparison of early limb development between the natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus) Tj ETQq0	O 011. g BT /0	Oveolock 10 Tf
41	Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 2009, 8, 93-115.	2.4	662
42	S17-03 Differences in the wing and hindlimb transcriptomes of the natal long-fingered bat, Miniopterus natalensis, during embryonic development. Mechanisms of Development, 2009, 126, S44-S45.	1.7	1
43	15-P002 Limbs gone batty: A second wave of Sonic hedgehog expression during the development of the bat limb. Mechanisms of Development, 2009, 126, S247.	1.7	0
44	Niche Differentiation in Two Sympatric Sibling Bat Species, Scotophilus Dinganii and Scotophilus Mhlanganii. Journal of Mammalogy, 2009, 90, 879-887.	1.3	28
45	Animal Personality and Biological Markets: Rise of the Individual. African Zoology, 2009, 44, 271-282.	0.4	2
46	Ignoring the irrelevant: auditory tolerance of audible but innocuous sounds in the bat-detecting ears of moths. Die Naturwissenschaften, 2008, 95, 241-245.	1.6	12
47	Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation. Behavioral Ecology, 2008, 19, 1333-1342.	2.2	41
48	The Relative Influence of Competition and Prey Defenses on the Phenotypic Structure of Insectivorous Bat Ensembles in Southern Africa. PLoS ONE, 2008, 3, e3715.	2.5	44
49	Surviving cave bats: auditory and behavioural defences in the Australian noctuid moth, <i>Speiredonia spectans </i> . Journal of Experimental Biology, 2008, 211, 3808-3815.	1.7	19
50	A second wave of <i>Sonic hedgehog </i> expression during the development of the bat limb. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16982-16987.	7.1	73
51	Thermoregulation in two free-ranging subtropical insectivorous bat species: Scotophilus species (Vespertilionidae). Canadian Journal of Zoology, 2007, 85, 883-890.	1.0	23
52	Karyotypic differences in two sibling species of <i>Scotophilus</i> from South Africa (Vespertilionidae, Chiroptera, Mammalia). Cytogenetic and Genome Research, 2007, 118, 72-77.	1.1	8
53	A Family Matter: Conclusive Resolution of the Taxonomic Position of the Long-Fingered Bats, Miniopterus. Molecular Biology and Evolution, 2007, 24, 1553-1561.	8.9	176
54	The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern?. Oecologia, 2007, 152, 583-594.	2.0	89

#	Article	IF	Citations
55	CRYPTIC SPECIES IN AN INSECTIVOROUS BAT, SCOTOPHILUS DINGANII. Journal of Mammalogy, 2006, 87, 161-170.	1.3	44
56	Deliberate insectivory by the fruit bat Rousettus aegyptiacus. Acta Chiropterologica, 2006, 8, 549-553.	0.6	25
57	Foraging and roosting ecology of a rare insectivorous bat species, Laephotis wintoni (Thomas, 1901), Vespertilionidae. Acta Chiropterologica, 2005, 7, 101-109.	0.6	7
58	GENETIC AND PHENOTYPIC DIFFERENCES BETWEEN SOUTH AFRICAN LONG-FINGERED BATS, WITH A GLOBAL MINIOPTERINE PHYLOGENY. Journal of Mammalogy, 2005, 86, 1121-1135.	1.3	69
59	A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera). Molecular Biology and Evolution, 2005, 22, 1869-1886.	8.9	211
60	Genetic Similarity Amongst Phenotypically Diverse Little Free-Tailed Bats, Chaerephon pumilus. Acta Chiropterologica, 2004, 6, 13-21.	0.6	14
61	Phylogeny of African <i>Myotis</i> Bats (Chiroptera, Vespertilionidae) Inferred from Cytochrome <i>b</i> Sequences. Acta Chiropterologica, 2004, 6, 177-192.	0.6	93
62	Individual signatures in the frequency-modulated sweep calls of African large-eared, free-tailed bats Otomops martiensseni (Chiroptera: Molossidae). Journal of Zoology, 2004, 262, 11-19.	1.7	61
63	The influence of wing morphology and echolocation on the gleaning ability of the insectivorous bat <i>Myotis tricolor</i> . Canadian Journal of Zoology, 2004, 82, 1854-1863.	1.0	8
64	Field identification of two morphologically similar bats, Miniopterus schreibersii natalensis and Miniopterus fraterculus (Chiroptera: Vespertilionidae). African Zoology, 2004, 39, 47-53.	0.4	16
65	Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia, 2003, 134, 154-162.	2.0	49
66	Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature, 2003, 424, 187-191.	27.8	97
67	Auditory encoding during the last moment of a moth's life. Journal of Experimental Biology, 2003, 206, 281-294.	1.7	45
68	Geographic variation in the morphology, echolocation and diet of the little free-tailed bat, <i>Chaerephon pumilus </i> (Molossidae). African Zoology, 2003, 38, 245-254.	0.4	38
69	Undergraduates' understanding of evolution: ascriptions of agency as a problem for student learning. Journal of Biological Education, 2002, 36, 65-71.	1.5	65
70	Mormopterus petrophilus. Mammalian Species, 2002, , .	0.7	0
71	Isolation and characterization of highly polymorphic microsatellite loci in Schreibers' long-fingered bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae). Molecular Ecology Notes, 2002, 2, 139-141.	1.7	18
72	Researching little-known species: the African bat Otomops martiensseni (Chiroptera: Molossidae). Biodiversity and Conservation, 2002, 11, 1583-1606.	2.6	23

#	Article	IF	CITATIONS
73	Mormopterus petrophilus. Mammalian Species, 2002, 703, 1-3.	0.7	2
74	The status of Sauromys petrophilus and Chaerephon pumilus (Chiroptera: Molossidae) in the Western Cape Province of South Africa. African Zoology, 2001, 36, 129-136.	0.4	6
75	Individual recognition in the Damaraland mole-rat, Cryptomys damarensis (Rodentia: Bathyergidae). Journal of Zoology, 2000, 251, 411-415.	1.7	6
76	Resource use by two morphologically similar insectivorous bats (<i>Nycteris) Tj ETQq0 0 0 rgBT /Overlock 10 Tf</i>	50 622 Td	(thebaica
77	The diet of the insectivorous Hawaiian hoary bat (Lasiurus cinereus semotus) in an open and a cluttered habitat. Canadian Journal of Zoology, 1999, 77, 1603-1608.	1.0	27
78	Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Canadian Journal of Zoology, 1999, 77, 530-534.	1.0	91
79	The diet of the insectivorous Hawaiian hoary bat (<i>Lasiurus cinereus semotus</i>) in an open and a cluttered habitat. Canadian Journal of Zoology, 1999, 77, 1603-1608.	1.0	4
80	Variation in the echolocation calls of the hoary bat (<i>Lasiuruscinereus</i>): influence of body size, habitat structure, and geographic location. Canadian Journal of Zoology, 1999, 77, 530-534.	1.0	39
81	Out-breeding behaviour and xenophobia in the damaraland mole-rat,Cryptomys damarensis. South African Journal of Zoology, 1998, 33, 189-194.	0.5	15
82	Concept-driven teaching and assessment in Invertebrate Zoology. Journal of Biological Education, 1998, 32, 191-199.	1.5	3
83	Morphological Divergence in an Insular Bat, Lasiurus cinereus semotus. Functional Ecology, 1996, 10, 622.	3.6	43
84	No evidence for the work-conflict hypothesis in the eusocial naked mole-rat (Heterocephalus glaber) Tj ETQq0 0	0 rgBT /O·	verjock 10 Tf
85	The colony structure and dominance hierarchy of the Damaraland moleâ€rat, <i>Cryptomys damarensis</i> (Rodentia: Bathyergidae), from Namibia. Journal of Zoology, 1991, 224, 553-576.	1.7	50