Dana Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3947516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life 2.0—A CRISPR path to a sustainable planet. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2107418118.	7.1	0
2	A short, idiosyncratic history of genome editing. Gene and Genome Editing, 2021, 1, 100002.	2.6	2
3	Giving Genome Editing the Fingers: An Interview with Dana Carroll. CRISPR Journal, 2019, 2, 157-162.	2.9	0
4	The Daunting Economics of Therapeutic Genome Editing. CRISPR Journal, 2019, 2, 280-284.	2.9	21
5	Collateral damage: benchmarking off-target effects in genome editing. Genome Biology, 2019, 20, 114.	8.8	25
6	A call for science-based review of the European court's decision on gene-edited crops. Nature Biotechnology, 2018, 36, 800-802.	17.5	43
7	Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9351-9358.	7.1	159
8	p53 Throws CRISPR a Curve. Trends in Pharmacological Sciences, 2018, 39, 783-784.	8.7	6
9	Impact of Chromatin on Genome Accessibility and Cleavage by CRISPR as9 in vivo. FASEB Journal, 2018, 32, 649.11.	0.5	0
10	Genome editing via delivery of Cas9 ribonucleoprotein. Methods, 2017, 121-122, 9-15.	3.8	123
11	Programming sites of meiotic crossovers using Spo11 fusion proteins. Nucleic Acids Research, 2017, 45, e164-e164.	14.5	44
12	Genome editing of human embryos: to edit or not to edit, that is the question. Journal of Clinical Investigation, 2017, 127, 3588-3590.	8.2	1
13	Genome Editing: Past, Present, and Future. Yale Journal of Biology and Medicine, 2017, 90, 653-659.	0.2	59
14	Regulate genome-edited products, not genome editing itself. Nature Biotechnology, 2016, 34, 477-479.	17.5	34
15	Genome editing: progress and challenges for medical applications. Genome Medicine, 2016, 8, 120.	8.2	26
16	Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine, 2016, 8, 360ra134.	12.4	386
17	A Perspective on the State of Genome Editing. Molecular Therapy, 2016, 24, 412-413.	8.2	4
18	The Development and Use of Zinc-Finger Nucleases. Advances in Experimental Medicine and Biology, 2016, , 15-28.	1.6	2

DANA CARROLL

#	Article	IF	CITATIONS
19	Origins of Programmable Nucleases for Genome Engineering. Journal of Molecular Biology, 2016, 428, 963-989.	4.2	239
20	The societal opportunities and challenges of genome editing. Genome Biology, 2015, 16, 242.	8.8	60
21	CRISPR germline engineering—the community speaks. Nature Biotechnology, 2015, 33, 478-486.	17.5	110
22	Regulatory hurdles for agriculture GMOs. Science, 2015, 347, 1324-1324.	12.6	2
23	A prudent path forward for genomic engineering and germline gene modification. Science, 2015, 348, 36-38.	12.6	541
24	Genome Editing by Targeted Chromosomal Mutagenesis. Methods in Molecular Biology, 2015, 1239, 1-13.	0.9	9
25	Engineering nucleases for gene targeting: safety and regulatory considerations. New Biotechnology, 2014, 31, 18-27.	4.4	84
26	Genome engineering with TALENs and ZFNs: Repair pathways and donor design. Methods, 2014, 69, 137-141.	3.8	30
27	Genome Engineering with Targetable Nucleases. Annual Review of Biochemistry, 2014, 83, 409-439.	11.1	472
28	Targeted genome engineering techniques in Drosophila. Methods, 2014, 68, 29-37.	3.8	64
29	Precision genome engineering. Current Biology, 2014, 24, R102-R103.	3.9	1
30	Staying on target with CRISPR-Cas. Nature Biotechnology, 2013, 31, 807-809.	17.5	55
31	Heritable Gene Knockout in <i>Caenorhabditis elegans</i> by Direct Injection of Cas9–sgRNA Ribonucleoproteins. Genetics, 2013, 195, 1177-1180.	2.9	237
32	Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila. G3: Genes, Genomes, Genetics, 2013, 3, 1717-1725.	1.8	61
33	Donor DNA Utilization During Gene Targeting with Zinc-Finger Nucleases. G3: Genes, Genomes, Genetics, 2013, 3, 657-664.	1.8	116
34	A CRISPR Approach to Gene Targeting. Molecular Therapy, 2012, 20, 1658-1660.	8.2	56
35	Genome Engineering With Zinc-Finger Nucleases. Genetics, 2011, 188, 773-782.	2.9	804
36	Zinc-Finger Nucleases: A Panoramic View. Current Gene Therapy, 2011, 11, 2-10.	2.0	40

DANA CARROLL

#	Article	IF	CITATIONS
37	Genome editing with modularly assembled zinc-finger nucleases. Nature Methods, 2010, 7, 91-91.	19.0	88
38	Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochemistry and Molecular Biology, 2010, 40, 759-765.	2.7	136
39	High-Efficiency Gene Targeting in Drosophila with Zinc Finger Nucleases. Methods in Molecular Biology, 2010, 649, 271-280.	0.9	11
40	Genetic Analysis of Zinc-Finger Nuclease-Induced Gene Targeting in Drosophila. Genetics, 2009, 182, 641-651.	2.9	103
41	Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9607-9612.	7.1	85
42	Efficient gene targeting in <i>Drosophila</i> by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19821-19826.	7.1	270
43	Gene Targeting in Drosophila and Caenorhabditis elegans With Zinc-Finger Nucleases. Methods in Molecular Biology, 2008, 435, 63-77.	0.9	41
44	Efficient Gene Targeting in Drosophila With Zinc-Finger Nucleases. Genetics, 2006, 172, 2391-2403.	2.9	216
45	Design, construction and in vitro testing of zinc finger nucleases. Nature Protocols, 2006, 1, 1329-1341.	12.0	177
46	Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16370-16375.	7.1	175
47	Gene targeting using zinc finger nucleases. Nature Biotechnology, 2005, 23, 967-973.	17.5	592
48	Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2232-2237.	7.1	396
49	Using Nucleases to Stimulate Homologous Recombination. , 2004, 262, 195-208.		34
50	Enhancing Gene Targeting with Designed Zinc Finger Nucleases. Science, 2003, 300, 764-764.	12.6	719
51	Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases. Genetics, 2002, 161, 1169-1175.	2.9	724
52	Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Molecular and Cellular Biology, 2001, 21, 289-297.	2.3	564
53	Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications. Genetica, 2000, 110, 245-256.	1.1	7
54	Illegitimate recombination inXenopus: characterization of end-joined junctions. Nucleic Acids Research, 1994, 22, 434-442.	14.5	68