Bharat Kumar Gehlot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3947321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the AARTFAAC-12 aperture array: radio source counts at 42 and 61ÂMHz. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1036-1045.	4.4	1
2	Statistical analysis of the causes of excess variance in the 21 cm signal power spectra obtained with the Low-Frequency Array. Astronomy and Astrophysics, 2022, 663, A9.	5.1	6
3	Degree-scale galactic radio emission at 122 MHz around the North Celestial Pole with LOFAR-AARTFAAC. Astronomy and Astrophysics, 2022, 662, A97.	5.1	3
4	Effects of model incompleteness on the drift-scan calibration of radio telescopes. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4578-4592.	4.4	2
5	A numerical study of 21-cm signal suppression and noise increase in direction-dependent calibration of LOFAR data. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3693-3702.	4.4	15
6	Constraining the intergalactic medium at z â‰^9.1 using LOFAR Epoch of Reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4728-4747.	4.4	69
7	Tight constraints on the excess radio background at zÂ= 9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4178-4191.	4.4	55
8	Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z â‰^9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1662-1685.	4.4	185
9	The AARTFAAC Cosmic Explorer: observations of the 21-cm power spectrum in the EDGES absorption trough. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4158-4173.	4.4	23
10	Comparing foreground removal techniques for recovery of the LOFAR-EoR 21 cm power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2264-2277.	4.4	34
11	The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at zÂ= 20–25 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4271-4287.	4.4	77
12	Precision requirements for interferometric gridding in the analysis of a 21 cm power spectrum. Astronomy and Astrophysics, 2019, 631, A12.	5.1	17
13	Polarization leakage in epoch of reionization windows – III. Wide-field effects of narrow-field arrays. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3051-3062.	4.4	24
14	Wide-field LOFAR-LBA power-spectra analyses: impact of calibration, polarization leakage, and ionosphere. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1484-1501.	4.4	22
15	Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR. Astrophysical Journal, 2017, 838, 65.	4.5	219
16	Polarization leakage in epoch of reionization windows – II. Primary beam model and direction-dependent calibration. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4482-4494.	4.4	26