Lukasz L Stelinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3946537/publications.pdf

Version: 2024-02-01

140 papers 5,808 citations

94433 37 h-index 70 g-index

142 all docs 142 docs citations

times ranked

142

3699 citing authors

#	Article	IF	CITATIONS
1	Biology and Management of Asian Citrus Psyllid, Vector of the Huanglongbing Pathogens. Annual Review of Entomology, 2013, 58, 413-432.	11.8	538
2	Codling Moth Management and Chemical Ecology. Annual Review of Entomology, 2008, 53, 503-522.	11.8	335
3	Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 2011, 67, 1258-1268.	3.4	278
4	Induced Release of a Plant-Defense Volatile †Deceptively†Mattracts Insect Vectors to Plants Infected with a Bacterial Pathogen. PLoS Pathogens, 2012, 8, e1002610.	4.7	244
5	Subterranean Herbivore-induced Volatiles Released by Citrus Roots upon Feeding by Diaprepes abbreviatus Recruit Entomopathogenic Nematodes. Journal of Chemical Ecology, 2010, 36, 361-368.	1.8	166
6	Sequential Sympatric Speciation Across Trophic Levels. Science, 2009, 323, 776-779.	12.6	165
7	Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology, 2011, 99, 26-35.	4.0	155
8	Roles of Olfactory Cues, Visual Cues, and Mating Status in Orientation of <l>Diaphorina citri</l> Kuwayama (Hemiptera: Psyllidae) to Four Different Host Plants. Environmental Entomology, 2009, 38, 225-234.	1.4	137
9	Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri. PLoS ONE, 2014, 9, e110536.	2.5	124
10	Quantifying Dispersal of <i>Diaphorina citri </i> (Hemiptera: Psyllidae) by Immunomarking and Potential Impact of Unmanaged Groves on Commercial Citrus Management. Environmental Entomology, 2009, 38, 1250-1258.	1.4	121
11	Antifeedant and sublethal effects of imidacloprid on Asian citrus psyllid, <i>Diaphorina citri</i> . Pest Management Science, 2009, 65, 870-877.	3.4	117
12	The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME Journal, 2015, 9, 126-138.	9.8	113
13	Seasonal Movement Patterns and Long-Range Dispersal of Asian Citrus Psyllid in Florida Citrus. Journal of Economic Entomology, 2015, 108, 3-10.	1.8	111
14	Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats. PLoS ONE, 2012, 7, e38146.	2.5	99
15	The Scent of a Partner: Ambrosia Beetles Are Attracted to Volatiles from Their Fungal Symbionts. Journal of Chemical Ecology, 2011, 37, 1374-1377.	1.8	96
16	Influence of Posttreatment Temperature on the Toxicity of Insecticides Against <l>Diaphorina citri</l> (Hemiptera: Psyllidae). Journal of Economic Entomology, 2009, 102, 685-691.	1.8	82
17	Behavioral evidence for a femaleâ€produced sex attractant in <i>DiaphorinaÂcitri</i> . Entomologia Experimentalis Et Applicata, 2008, 128, 450-459.	1.4	81
18	Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal. PLoS ONE, 2015, 10, e0129373.	2.5	81

#	Article	IF	CITATIONS
19	Tale of the Huanglongbing Disease Pyramid in the Context of the Citrus Microbiome. Phytopathology, 2017, 107, 380-387.	2.2	79
20	Morphological characterization of the antennal sensilla of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), with reference to their probable functions. Micron, 2008, 39, 1184-1191.	2.2	78
21	Incidence of Candidatus Liberibacter asiaticus Infection in Abandoned Citrus Occurring in Proximity to Commercially Managed Groves. Journal of Economic Entomology, 2010, 103, 1972-1978.	1.8	76
22	Glutathione Transferase and Cytochrome P450 (General Oxidase) Activity Levels in <i>Candidatus</i> Liberibacter Asiaticus-Infected and Uninfected Asian Citrus Psyllid (Hemiptera: Psyllidae). Annals of the Entomological Society of America, 2011, 104, 297-305.	2.5	76
23	Effect of <i>Candidatus</i> Liberibacter asiaticus infection on susceptibility of Asian citrus psyllid, <i>Diaphorina citri</i> , to selected insecticides. Pest Management Science, 2011, 67, 94-99.	3.4	68
24	Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Management Science, 2013, 69, 1066-1072.	3.4	68
25	Effect of pyriproxyfen, a juvenile hormone mimic, on egg hatch, nymph development, adult emergence and reproduction of the Asian citrus psyllid, <i>Diaphorina citri</i> Kuwayama. Pest Management Science, 2010, 66, 349-357.	3.4	63
26	Abdominal Color of the Asian Citrus Psyllid (Hemiptera: Liviidae) is Associated with Flight Capabilities. Annals of the Entomological Society of America, 2014, 107, 842-847.	2.5	62
27	Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	59
28	Effects of buprofezin and diflubenzuron on various developmental stages of Asian citrus psyllid, <i>Diaphorina citri</i> . Pest Management Science, 2012, 68, 1405-1412.	3.4	56
29	Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating. PLoS ONE, 2011, 6, e29197.	2.5	55
30	Biochemical Basis of Organophosphate and Carbamate Resistance in Asian Citrus Psyllid. Journal of Economic Entomology, 2012, 105, 540-548.	1.8	51
31	Volatiles from the symbiotic fungus <i>Raffaelea lauricola</i> are synergistic with Manuka lures for increased capture of the Redbay ambrosia beetle <i>Xyleborus glabratus</i> Entomology, 2014, 16, 87-94.	1.3	47
32	Plant volatiles and density-dependent conspecific female odors are used by Asian citrus psyllid to evaluate host suitability on a spatial scale. Arthropod-Plant Interactions, 2014, 8, 453-460.	1.1	47
33	Presence of long-lasting peripheral adaptation in oblique-banded leafroller, Choristoneura rosaceana and absence of such adaptation in redbanded leafroller, Argyrotaenia velutinana. Journal of Chemical Ecology, 2003, 29, 405-423.	1.8	46
34	Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. Journal of Pest Science, 2021, 94, 615-637.	3.7	45
35	Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Protection, 2017, 98, 102-107.	2.1	42
36	Sending Mixed Messages: A Trophic Cascade Produced by a Belowground Herbivore-Induced Cue. Journal of Chemical Ecology, 2013, 39, 1140-1147.	1.8	41

#	Article	IF	Citations
37	Pheromone Autodetection: Evidence and Implications. Insects, 2016, 7, 17.	2.2	41
38	Relationships Between Adult Abdominal Color and Reproductive Potential in <i>Diaphorina citri</i> (Hemiptera: Psyllidae). Annals of the Entomological Society of America, 2009, 102, 476-483.	2.5	38
39	Antennal Sensilla of <i>Tamarixia radiata</i> (Hymenoptera: Eulophidae), a Parasitoid of <i>Diaphorina citri</i> (Hemiptera: Psyllidae). Annals of the Entomological Society of America, 2009, 102, 523-531.	2.5	36
40	Concentration of air-borne pheromone required for long-lasting peripheral adaptation in the obliquebanded leafroller, Choristoneura rosaceana. Physiological Entomology, 2003, 28, 97-107.	1.5	35
41	Formic and Acetic Acids in Degradation Products of Plant Volatiles Elicit Olfactory and Behavioral Responses from an Insect Vector. Chemical Senses, 2016, 41, 325-338.	2.0	35
42	Risk assessment of various insecticides used for management of Asian citrus psyllid, Diaphorina citri in Florida citrus, against honey bee, Apis mellifera. Ecotoxicology, 2017, 26, 351-359.	2.4	35
43	Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida. Insects, 2017, 8, 103.	2.2	35
44	Host and Non-host â€`Whistle Stops' for Psyllids: Molecular Gut Content Analysis by High-Throughput Sequencing Reveals Landscape-Level Movements of Psylloidea (Hemiptera). Environmental Entomology, 2019, 48, 554-566.	1.4	35
45	Susceptibility of Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), to the insecticide afidopyropen: a new and potent modulator of insect transient receptor potential channels. Applied Entomology and Zoology, 2018, 53, 453-461.	1.2	34
46	Resistance to commonly used insecticides in Asian citrus psyllid: Stability and relationship to gene expression. Journal of Applied Entomology, 2018, 142, 967-977.	1.8	33
47	Chemical and behavioral analysis of the cuticular hydrocarbons from Asian citrus psyllid, <i>Diaphorina citri</i> . Insect Science, 2013, 20, 367-378.	3.0	32
48	Social Networks of Educated Nematodes. Scientific Reports, 2015, 5, 14388.	3.3	32
49	Behaviors of Na $\tilde{\mathbb{A}}$ ve vs. Pheromone-Exposed Leafroller Moths in Plumes from High-Dosage Pheromone Dispensers in a Sustained-Flight Wind Tunnel: Implications for Mating Disruption of These Species. Journal of Insect Behavior, 2004, 17, 533-554.	0.7	31
50	Attraction of Redbay Ambrosia Beetle, Xyleborus Glabratus, To Leaf Volatiles of its Host Plants in North America. Journal of Chemical Ecology, 2015, 41, 613-621.	1.8	30
51	The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. Journal of Chemical Ecology, 2017, 43, 519-531.	1.8	30
52	Occurrence of <i>Diaphorina citri </i> (Hemiptera: Liviidae) in an Unexpected Ecosystem: The Lake Kissimmee State Park Forest, Florida. Florida Entomologist, 2013, 96, 658-660.	0.5	29
53	Female Moth Calling and Flight Behavior Are Altered Hours Following Pheromone Autodetection: Possible Implications for Practical Management with Mating Disruption. Insects, 2014, 5, 459-473.	2.2	29
54	Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens. Journal of Chemical Ecology, 2016, 42, 357-367.	1.8	29

#	Article	IF	CITATIONS
55	Reversal of Insecticide Resistance in Florida Populations of (i>Diaphorina citri (Hemiptera: Liviidae). Florida Entomologist, 2016, 99, 26-32.	0.5	29
56	The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri. PLoS ONE, 2016, 11, e0149815.	2.5	29
57	Manipulation of Insect Behavior with Specialized Pheromone and Lure Application Technology (SPLAT®). ACS Symposium Series, 2013, , 31-58.	0.5	28
58	Abdominal color of the Asian citrus psyllid, <i>Diaphorina citri</i> , is associated with susceptibility to various insecticides. Pest Management Science, 2013, 69, 535-541.	3.4	28
59	Great Variability in the Infection Rate of â€~ <i>Candidatus</i> Liberibacter Asiaticus' in Field Populations of <i>Diaphorina citri</i> (Hemiptera: Liviidae) in Florida. Florida Entomologist, 2015, 98, 356-357.	0.5	27
60	Absence of windbreaks and replanting citrus in solid sets increase density of Asian citrus psyllid populations. Agriculture, Ecosystems and Environment, 2015, 212, 168-174.	5.3	27
61	Machine Learning for Characterization of Insect Vector Feeding. PLoS Computational Biology, 2016, 12, e1005158.	3.2	27
62	Effects of pymetrozine, an antifeedant of Hemiptera, on Asian citrus psyllid, <i>Diaphorina citri</i> , feeding behavior, survival and transmission of <i>Candidatus</i> Liberibacter asiaticus. Pest Management Science, 2011, 67, 146-155.	3.4	26
63	Drought stress affects response of phytopathogen vectors and their parasitoids to infection―and damageâ€induced plant volatile cues. Ecological Entomology, 2017, 42, 721-730.	2.2	26
64	Eucalyptol is an Attractant of the Redbay Ambrosia Beetle, Xyleborus Glabratus. Journal of Chemical Ecology, 2014, 40, 355-362.	1.8	24
65	Asian citrus psyllid adults inoculate huanglongbing bacterium more efficiently than nymphs when this bacterium is acquired by early instar nymphs. Scientific Reports, 2020, 10, 18244.	3.3	24
66	Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground. PLoS ONE, 2016, 11, e0154712.	2.5	24
67	Comparative behavioral and EAG responses of female obliquebanded and redbanded leafroller moths (Lepidoptera: Tortricidae) to their sex pheromone components. European Journal of Entomology, 2007, 104, 187-194.	1.2	24
68	Vertical T-maze Choice Assay for Arthropod Response to Odorants. Journal of Visualized Experiments, 2013, , .	0.3	23
69	Ecological Aspects of the Vector-Borne Bacterial Disease, Citrus Greening (Huanglongbing): Dispersal and Host Use by Asian Citrus Psyllid, Diaphorina Citri Kuwayama. Insects, 2019, 10, 208.	2.2	23
70	Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Scientific Reports, 2020, 10, 2670.	3.3	23
71	Reduced Mating Success of Female Tortricid Moths Following Intense Pheromone Auto-Exposure Varies with Sophistication of Mating System. Journal of Chemical Ecology, 2012, 38, 168-175.	1.8	22
72	An Attempt to Increase Efficacy of Moth Mating Disruption by Co-Releasing Pheromones With Kairomones and to Understand Possible Underlying Mechanisms of This Technique. Environmental Entomology, 2013, 42, 158-166.	1.4	22

#	Article	lF	Citations
73	Multitrophic Effects of Belowground Parasitoid Learning. Scientific Reports, 2017, 7, 2067.	3.3	22
74	Fitness costs associated with thiamethoxam and imidacloprid resistance in three field populations of <i>Diaphorina citri </i> (Hemiptera: Liviidae) from Florida. Bulletin of Entomological Research, 2020, 110, 512-520.	1.0	22
75	Sensory Imbalance as Mechanism of Orientation Disruption in the Leafminer Phyllocnistis citrella: Elucidation by Multivariate Geometric Designs and Response Surface Models. Journal of Chemical Ecology, 2009, 35, 896-903.	1.8	21
76	Factors Affecting the Overwintering Abundance of the Asian Citrus Psyllid (Hemiptera: Liviidae) in Florida Citrus (Sapindales: Rutaceae) Orchards. Florida Entomologist, 2016, 99, 178-186.	0.5	21
77	Rapid Detection of Insecticide Resistance in <i>Diaphorina citri</i> (Hemiptera: Liviidae) Populations, using a Bottle Bioassay. Florida Entomologist, 2017, 100, 124-133.	0.5	21
78	Male Psyllids Differentially Learn in the Context of Copulation. Insects, 2017, 8, 16.	2.2	21
79	Influence of Abiotic Factors on Flight Initiation by Asian Citrus Psyllid (Hemiptera: Liviidae). Environmental Entomology, 2017, 46, 369-375.	1.4	20
80	Feeding Behavior of Asian Citrus Psyllid [Diaphorina citri (Hemiptera: Liviidae)] Nymphs and Adults on Common Weeds Occurring in Cultivated Citrus Described Using Electrical Penetration Graph Recordings. Insects, 2020, 11, 48.	2.2	20
81	Potential targets for controlling <scp><i>Bactrocera dorsalis</i></scp> using cuticle―and hormone―elated genes revealed by a developmental transcriptome analysis. Pest Management Science, 2020, 76, 2127-2143.	3.4	20
82	Dispersal behaviour of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae) in avocado groves and estimation of lure sampling range. Agricultural and Forest Entomology, 2019, 21, 199-208.	1.3	19
83	Long-term, sustained feeding by Asian citrus psyllid disrupts salicylic acid homeostasis in sweet orange. BMC Plant Biology, 2019, 19, 493.	3.6	18
84	Effects of Wind, Temperature, and Barometric Pressure on Asian Citrus Psyllid (Hemiptera: Liviidae) flight behavior. Journal of Economic Entomology, 2018, 111, 2570-2577.	1.8	17
85	Insecticide rotation scheme restores insecticide susceptibility in thiamethoxamâ€resistant field populations of Asian citrus psyllid, ⟨scp⟩⟨i>Diaphorina citri⟨ i>⟨ scp⟩ Kuwayama (Hemiptera: Liviidae), in Florida. Pest Management Science, 2021, 77, 464-473.	3.4	17
86	Induced resistance against the Asian citrus psyllid, Diaphorina citri, by \hat{l}^2 -aminobutyric acid in citrus. Bulletin of Entomological Research, 2013, 103, 592-600.	1.0	16
87	Risk taking of educated nematodes. PLoS ONE, 2018, 13, e0205804.	2.5	15
88	Repellent Activity of Botanical Oils against Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects, 2016, 7, 35.	2.2	13
89	High throughput nematode counting with automated image processing. BioControl, 2016, 61, 177-183.	2.0	13
90	Flight Capacities and Diurnal Flight Patterns of the Ambrosia Beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae). Environmental Entomology, 2017, 46, 729-734.	1.4	13

#	Article	IF	Citations
91	Lethal and sub-lethal effects of a novel sulfoximine insecticide, sulfoxaflor, against Asian citrus psyllid and its primary parasitoid under laboratory and field conditions. International Journal of Pest Management, 2017, 63, 299-308.	1.8	13
92	Reproductive performance among color morphs of Diaphorina citri Kuwayama, vector of citrus greening pathogens. Journal of Insect Physiology, 2019, 117, 103904.	2.0	13
93	Hexaacetyl-chitohexaose, a chitin-derived oligosaccharide, transiently activates citrus defenses and alters the feeding behavior of Asian citrus psyllid. Horticulture Research, 2019, 6, 76.	6.3	13
94	Secondary hosts of the Asian citrus psyllid, Diaphorina citri Kuwayama: Survivorship and preference. Journal of Applied Entomology, 2019, 143, 921-928.	1.8	12
95	The Effect of Host Plant Species on the Detoxifying Enzymes of the Asian Citrus Psyllid, <i>Diaphorina citri</i> (Hemiptera: Liviidae). Florida Entomologist, 2015, 98, 997-999.	0.5	11
96	A weevil sex pheromone serves as an attractant for its entomopathogenic nematode predators. Chemoecology, 2017, 27, 199-206.	1.1	11
97	Response of Diaphorina citri (Hemiptera: Liviidae) to volatiles characteristic of preferred citrus hosts. Arthropod-Plant Interactions, 2019, 13, 367-374.	1.1	11
98	Temporal Dynamics of Candidatus Liberibacter asiaticus Titer in Mature Leaves from Citrus sinensis cv Valencia Are Associated with Vegetative Growth. Journal of Economic Entomology, 2020, 113, 589-595.	1.8	10
99	A Multimodal Attract-and-Kill Device for the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae). Insects, 2020, 11, 870.	2.2	10
100	UV reflective properties of magnesium oxide increase attraction and probing behavior of Asian citrus psyllids (Hemiptera: Liviidae). Scientific Reports, 2020, 10, 1890.	3.3	10
101	Recognition of foreign oviposition marking pheromones is context dependent and determined by preimaginal conditioning. Communicative and Integrative Biology, 2009, 2, 391-393.	1.4	9
102	Spatial and Temporal Distribution of Soil-Applied Neonicotinoids in Citrus Tree Foliage. Journal of Economic Entomology, 2018, 111, 1788-1798.	1.8	9
103	â€~Tuning' communication among four trophic levels of the root biome to facilitate biological control. Biological Control, 2019, 131, 49-53.	3.0	9
104	Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae). Insects, 2020, 11, 452.	2.2	9
105	Comparative transcriptome analysis of thiamethoxam susceptible and resistant Asian citrus psyllid, <i>Diaphorina citri</i> (Hemiptera: Liviidae), using RNAâ€sequencing. Insect Science, 2021, 28, 1708-1720.	3.0	9
106	Growth, consumption and digestive enzyme activities of <i>Spodoptera littoralis</i> (Boisd) on various mung bean cultivars reveal potential tolerance traits. Journal of Applied Entomology, 2022, 146, 1145-1154.	1.8	9
107	Oviposition Marking Behavior of Diachasma alloeum, (Hymenoptera: Braconidae), Parasitizing Rhagoletis pomonella, (Diptera: Tephritidae). Journal of Insect Behavior, 2010, 23, 419-430.	0.7	8
108	Effects of methoprene, a juvenile hormone analog, on survival of various developmental stages, adult emergence, reproduction and behavior of Asian citrus psyllid, <i>Diaphorina citri</i> Kuwayama. Pest Management Science, 2015, 71, 1657-1665.	3.4	8

#	Article	IF	Citations
109	The effects of non-host plant extracts on electroantennogram responses, behavior and egg hatching of codling moth, Cydia pomonella. Journal of Pest Science, 2018, 91, 681-690.	3.7	8
110	Insecticide toxicity associated with detoxification enzymes and genes related to transcription of cuticular melanization among color morphs of Asian citrus psyllid. Insect Science, 2019, 26, 843-852.	3.0	8
111	Progress Toward an Attract-and-Kill Device for Asian Citrus Psyllid (Hemiptera: Liviidae) Using Volatile Signatures of Citrus Infected With Huanglongbing as the Attractant. Journal of Insect Science, 2020, 20, .	1.5	8
112	Distribution, Phenology, and Overwintering Survival of Asian Citrus Psyllid (Hemiptera: Liviidae), in Urban and Grove Habitats in North Florida. Journal of Economic Entomology, 2020, 113, 1080-1087.	1.8	8
113	Wind Speed and Direction Drive Assisted Dispersal of Asian Citrus Psyllid. Environmental Entomology, 2022, 51, 305-312.	1.4	8
114	Suppression of citrus leafminer, <i>Phyllocnistis citrella</i> , with an attractâ€andâ€kill formulation. Entomologia Experimentalis Et Applicata, 2010, 134, 69-77.	1.4	7
115	Bacterial phytopathogen infection disrupts belowground plant indirect defense mediated by tritrophic cascade. Ecology and Evolution, 2017, 7, 4844-4854.	1.9	7
116	Hormesis in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy) (Hemiptera: Aphididae) Exposed to Sublethal Doses of Imidacloprid. Florida Entomologist, 2020, 103, .	0.5	7
117	Patterns of habitat use by the Asian citrus psyllid, Diaphorina citri, as influenced by abiotic and biotic growing conditions. Agricultural and Forest Entomology, 2017, 19, 171-180.	1.3	6
118	Ladybird beetle trails reduce host acceptance by Diaphorina citri Kuwayama (Hemiptera: Liviidae). Biological Control, 2018, 121, 30-35.	3.0	6
119	Trail Chemicals of the Convergens Ladybird Beetle, Hippodamia convergens, Reduce Feeding and Oviposition by Diaphorina citri (Hemiptera: Psyllidae) on Citrus Plants. Journal of Insect Behavior, 2018, 31, 298-308.	0.7	6
120	Phytoene desaturase-silenced citrus as a trap crop with multiple cues to attract Diaphorina citri, the vector of Huanglongbing. Plant Science, 2021, 308, 110930.	3.6	6
121	Drought Stress Impairs Communication Between Solanum tuberosum (Solanales: Solanaceae) and Subterranean Biological Control Agents. Annals of the Entomological Society of America, 0, , .	2.5	5
122	Salicylic acid mediated immune response of Citrus sinensis to varying frequencies of herbivory and pathogen inoculation. BMC Plant Biology, 2022, 22, 7.	3.6	5
123	Genetic Modification of Bergera koenigii for Expression of the Bacterial Pesticidal Protein Cry1Ba1. Frontiers in Plant Science, 2022, 13, .	3.6	5
124	Characterization of the voltageâ€gated sodium channel of the Asian citrus psyllid, <i>Diaphorina citri</i> . Insect Science, 2017, 24, 47-59.	3.0	4
125	Spray Droplet Size Affects Efficacy of Fenpropathrin Against Asian Citrus Psyllid. , 2012, , 1-13.		4
126	Behavioral Evidence for Host Transitions in Plant, Plant Parasite, and Insect Interactions. Environmental Entomology, 2018, 47, 646-653.	1.4	3

#	Article	IF	CITATIONS
127	Spray Droplet Size Affects Efficacy of Fenpropathrin Against Asian Citrus Psyllid., 2013, , 162-174.		3
128	Crude Extracts and Alkaloids Derived from Ipomoea-Periglandula Symbiotic Association Cause Mortality of Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Insects, 2021, 12, 929.	2.2	3
129	Monitoring of <i>Diaphorina citri</i> populations from Florida reveals reduced susceptibility to cyantraniliprole and thiamethoxam. Journal of Applied Entomology, 2022, 146, 725-733.	1.8	3
130	Use of Repellents Formulated in Specialized Pheromone and Lure Application Technology for Effective Insect Pest Management., 2014,, 291-314.		2
131	Effects of Cold-Acclimation, Pathogen Infection, and Varying Temperatures on Insecticide Susceptibility, Feeding, and Detoxifying Enzyme Levels in <i>Diaphorina citri</i> (Hemiptera: Liviidae). Florida Entomologist, 2015, 98, 870-879.	0.5	2
132	OUP accepted manuscript. Journal of Economic Entomology, 2021, 114, 2172-2188.	1.8	2
133	Population Fluctuations of Diaphorina citri and Its Natural Enemies in Response to Various Management Practices in Florida. Florida Entomologist, 2021, 104, .	0.5	2
134	Integrating Research and Extension for Successful Integrated Pest Management., 2014,, 355-392.		2
135	Chemoecology and Behavior of Parasitic Nematodeâ€"Host Interactions: Implications for Management. , 2018, , 91-113.		2
136	Suitability of Formulated Entomopathogenic Fungi Against Hibiscus Mealybug, <i>Nipaecoccus viridis</i> (Hemiptera: Pseudococcidae), Deployed Within Mesh Covers Intended to Protect Citrus From Huanglongbing. Journal of Economic Entomology, 2022, 115, 212-223.	1.8	2
137	Detectability of Hibiscus Mealybug, <i>Nipaecoccus viridis</i> (Hemiptera: Pseudoccocidae), DNA in the Mealybug Destroyer, <i>Cryptolaemus montrouzieri</i> (Coleoptera: Coccinellidae), and Survey of Its Predators in Florida Citrus Groves. Journal of Economic Entomology, 2022, 115, 1583-1591.	1.8	2
138	Investigating dormant-season application of pheromone in citrus to control overwintering and spring populations of $\langle i \rangle$ Phyllocnistis citrella $\langle i \rangle$ (Lepidoptera: Gracillariidae). Pest Management Science, 2016, 72, 1405-1410.	3.4	1
139	Ant-psyllid mutualism affects predation of Diaphorina citri by lady beetle larvae and abundance of psyllid natural enemies. BioControl, 0, , $1.$	2.0	1
140	Fenpropathrin resistance in Asian citrus psyllid, Diaphorina citri Kuwayama: risk assessment and changes in expression of CYP and GST genes associated with resistance. International Journal of Pest Management, 2020, , 1-10.	1.8	0