

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3945079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lasting Effects of Soil Compaction on Soil Water Regime Confirmed by Geoelectrical Monitoring. Water Resources Research, 2022, 58, e2021WR030696.	1.7	6
2	Controlling pore-scale processes to tame subsurface biomineralization. Reviews in Environmental Science and Biotechnology, 2022, 21, 27-52.	3.9	8
3	Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment. ISME Journal, 2022, 16, 1453-1463.	4.4	15
4	Limited role of soil texture in mediating natural vegetation response to rainfall anomalies. Environmental Research Letters, 2022, 17, 034012.	2.2	5
5	Bacterial age distribution in soil – Generational gaps in adjacent hot and cold spots. PLoS Computational Biology, 2022, 18, e1009857.	1.5	6
6	Dielectric Measurement of Agricultural Grain Moisture—Theory and Applications. Sensors, 2022, 22, 2083.	2.1	13
7	Primary carbon sources and self-induced metabolic landscapes shape community structure in soil bacterial hotspots. Soil Biology and Biochemistry, 2022, 168, 108620.	4.2	5
8	Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates. Remote Sensing, 2022, 14, 1947.	1.8	9
9	On Infiltration and Infiltration Characteristic Times. Water Resources Research, 2022, 58, .	1.7	5
10	Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117699119.	3.3	32
11	Mechanisms for biocrust-modulated runoff generation – A review. Earth-Science Reviews, 2022, 231, 104100.	4.0	21
12	Persistent decay of fresh xylem hydraulic conductivity varies with pressure gradient and marks plant responses to injury. Plant, Cell and Environment, 2021, 44, 371-386.	2.8	9
13	Enhanced Rainfallâ€Induced Shallow Landslide Activity Following Seismic Disturbance—From Triggering to Healing. Journal of Geophysical Research F: Earth Surface, 2021, 126, .	1.0	6
14	Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves. Hydrology and Earth System Sciences, 2021, 25, 447-471.	1.9	15
15	Spatiotemporal metabolic modeling of bacterial life in complex habitats. Current Opinion in Biotechnology, 2021, 67, 65-71.	3.3	8
16	Choice of Pedotransfer Functions Matters when Simulating Soil Water Balance Fluxes. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002404.	1.3	22
17	SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications. Earth System Science Data, 2021, 13, 1593-1612.	3.7	23
18	Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariateâ€Based GeoTransfer Function (CoGTF) Framework. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002242.	1.3	28

#	Article	IF	CITATIONS
19	Evaporation Suppression From Small Reservoirs Using Floating Covers—Field Study and Modeling. Water Resources Research, 2021, 57, e2020WR028753.	1.7	8
20	Natural and managed soil structure: On the fragile scaffolding for soil functioning. Soil and Tillage Research, 2021, 208, 104912.	2.6	70
21	Global earthworm distribution and activity windows based on soil hydromechanical constraints. Communications Biology, 2021, 4, 612.	2.0	13
22	The chosen few—variations in common and rare soil bacteria across biomes. ISME Journal, 2021, 15, 3315-3325.	4.4	22
23	Soil structure recovery following compaction: Shortâ€ŧerm evolution of soil physical properties in a Ioamy soil. Soil Science Society of America Journal, 2021, 85, 1002-1020.	1.2	20
24	A framework for quantifying hydrologic effects of soil structure across scales. Communications Earth & Environment, 2021, 2, .	2.6	24
25	Seismic signatures reveal persistence of soil compaction. Vadose Zone Journal, 2021, 20, e20140.	1.3	11
26	Clays Are Not Created Equal: How Clay Mineral Type Affects Soil Parameterization. Geophysical Research Letters, 2021, 48, e2021GL095311.	1.5	21
27	Using the Complementary Relationship Between Actual and Potential Evaporation to Diagnose the Onset of Heatwaves. Water Resources Research, 2021, 57, e2020WR029156.	1.7	5
28	The Lasting Signatures of Past Landslides on Soil Stripping From Landscapes. Water Resources Research, 2021, 57, .	1.7	6
29	The Tyranny of Small Scales—On Representing Soil Processes in Global Land Surface Models. Water Resources Research, 2020, 56, .	1.7	22
30	The engineering of spatially linked microbial consortia – potential and perspectives. Current Opinion in Biotechnology, 2020, 62, 137-145.	3.3	33
31	Rainfall Intensity Temporal Patterns Affect Shallow Landslide Triggering and Hazard Evolution. Geophysical Research Letters, 2020, 47, e2019GL085994.	1.5	20
32	Reduced gravity promotes bacterially mediated anoxic hotspots in unsaturated porous media. Scientific Reports, 2020, 10, 8614.	1.6	4
33	A framework for modelling soil structure dynamics induced by biological activity. Global Change Biology, 2020, 26, 5382-5403.	4.2	75
34	Spatial organization in microbial range expansion emerges from trophic dependencies and successful lineages. Communications Biology, 2020, 3, 685.	2.0	23
35	The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biology and Biochemistry, 2020, 148, 107876.	4.2	137
36	Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses. Environmental Research Communications, 2020, 2, 061002.	0.9	21

#	Article	IF	CITATIONS
37	Water Table Depth and Soil Salinization: From Poreâ€&cale Processes to Fieldâ€&cale Responses. Water Resources Research, 2020, 56, e2019WR026707.	1.7	45
38	Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nature Communications, 2020, 11, 116.	5.8	78
39	Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions. Water Resources Research, 2020, 56, e2019WR025963.	1.7	15
40	Soil structureÂis an important omission in Earth System Models. Nature Communications, 2020, 11, 522.	5.8	138
41	Surface Evaporation in Arid Regions: Insights From Lysimeter Decadal Record and Global Application of a Surface Evaporation Capacitor (SEC) Model. Geophysical Research Letters, 2019, 46, 9648-9657.	1.5	23
42	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	1.3	56
43	A hierarchy of environmental covariates control the global biogeography of soil bacterial richness. Scientific Reports, 2019, 9, 12129.	1.6	16
44	Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Computational Biology, 2019, 15, e1007127.	1.5	45
45	Deforestation Effects on Rainfallâ€Induced Shallow Landslides: Remote Sensing and Physicallyâ€Based Modelling. Water Resources Research, 2019, 55, 9962-9976.	1.7	22
46	Microscale pH variations during drying of soils and desert biocrusts affect HONO and NH3 emissions. Nature Communications, 2019, 10, 3944.	5.8	31
47	Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 2019, 194, 104293.	2.6	204
48	A Mechanistic Model of Microbially Mediated Soil Biogeochemical Processes: A Reality Check. Global Biogeochemical Cycles, 2019, 33, 620-648.	1.9	46
49	Evaporation Suppression From Water Bodies Using Floating Covers: Laboratory Studies of Cover Type, Wind, and Radiation Effects. Water Resources Research, 2019, 55, 4839-4853.	1.7	28
50	Evaporation-Induced Capillary Siphoning Through Hydraulically Connected Porous Domains: The Vedernikov–Bouwer Model Revisited. Transport in Porous Media, 2019, 129, 231-251.	1.2	10
51	Bridging the Holistic-Reductionist Divide in Microbial Ecology. MSystems, 2019, 4, .	1.7	29
52	Rapid Shifts in Bacterial Community Assembly under Static and Dynamic Hydration Conditions in Porous Media. Applied and Environmental Microbiology, 2019, 86, .	1.4	6
53	Surface Evaporative Capacitance: How Soil Type and Rainfall Characteristics Affect Global cale Surface Evaporation. Water Resources Research, 2019, 55, 519-539.	1.7	66
54	Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nature Communications, 2018, 9, 769.	5.8	125

#	Article	IF	CITATIONS
55	Suppressing viscous fingering in structured porous media. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4833-4838.	3.3	107
56	On Upscaling of Soil Microbial Processes and Biogeochemical Fluxes From Aggregates to Landscapes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1526-1547.	1.3	29
57	Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles. Global Change Biology, 2018, 24, e378-e392.	4.2	34
58	A Review of Geophysical Methods for Soil Structure Characterization. Reviews of Geophysics, 2018, 56, 672-697.	9.0	97
59	Covariation of vegetation and climate constrains present and future T/ET variability. Environmental Research Letters, 2018, 13, 104012.	2.2	42
60	Evaporation suppression and energy balance of water reservoirs covered with self-assembling floating elements. Hydrology and Earth System Sciences, 2018, 22, 4015-4032.	1.9	38
61	Soil Texture Effects on Surface Resistance to Bareâ€Soil Evaporation. Geophysical Research Letters, 2018, 45, 10,398.	1.5	59
62	Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9791-9796.	3.3	83
63	Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. Journal of the Royal Society Interface, 2018, 15, 20180127.	1.5	14
64	Listening to earthworms burrowing and roots growing - acoustic signatures of soil biological activity. Scientific Reports, 2018, 8, 10236.	1.6	16
65	How Landslides Become Disasters. Eos, 2018, 99, .	0.1	2
66	Load redistribution rules for progressive failure in shallow landslides: Threshold mechanical models. Geophysical Research Letters, 2017, 44, 228-235.	1.5	4
67	Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces. Scientific Reports, 2017, 7, 43726.	1.6	51
68	Longâ€Term Soil Structure Observatory for Monitoring Postâ€Compaction Evolution of Soil Structure. Vadose Zone Journal, 2017, 16, 1-16.	1.3	63
69	Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1216-1238.	1.3	21
70	Capillary flows across layers and textural interfaces – Pathways and colloid transport considerations in unsaturated layered porous media. Journal of Colloid and Interface Science, 2017, 504, 294-304.	5.0	6
71	Microbial community response to hydration-desiccation cycles in desert soil. Scientific Reports, 2017, 7, 45735.	1.6	80
72	The complementary relationship between actual and potential evaporation for spatially heterogeneous surfaces. Water Resources Research, 2017, 53, 580-601.	1.7	15

#	Article	IF	CITATIONS
73	New turbulent resistance parameterization for soil evaporation based on a poreâ€scale model: Impact on surface fluxes in <scp>CABLE</scp> . Journal of Advances in Modeling Earth Systems, 2017, 9, 220-238.	1.3	30
74	Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides, 2017, 14, 1139-1146.	2.7	52
75	The foam drainage equation for drainage dynamics in unsaturated porous media. Water Resources Research, 2017, 53, 5706-5724.	1.7	6
76	Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer. Boundary-Layer Meteorology, 2017, 165, 519-534.	1.2	4
77	Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews, 2017, 41, 599-623.	3.9	314
78	Pore-scale study of thermal fields during evaporation from drying porous surfaces. International Journal of Heat and Mass Transfer, 2017, 104, 1189-1201.	2.5	13
79	Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology, 2017, 280, 1-15.	1.1	49
80	Mechanics and Energetics of Soil Penetration by Earthworms and Plant Roots: Higher Rates Cost More. Vadose Zone Journal, 2017, 16, 1-16.	1.3	20
81	Continuum cavity expansion and discrete micromechanical models for inferring macroscopic snow mechanical properties from cone penetration data. Geophysical Research Letters, 2017, 44, 8377-8386.	1.5	9
82	Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia. Frontiers in Microbiology, 2017, 8, 1125.	1.5	84
83	Resolving Species Level Changes in a Representative Soil Bacterial Community Using Microfluidic Quantitative PCR. Frontiers in Microbiology, 2017, 8, 2017.	1.5	40
84	Leaf-scale experiments reveal an important omission in the Penman–Monteith equation. Hydrology and Earth System Sciences, 2017, 21, 685-706.	1.9	33
85	Characteristics of Acoustic Emissions from Soil Subjected to Confined Uniaxial Compression. Vadose Zone Journal, 2017, 16, 1-12.	1.3	12
86	Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial) plant leaves. Hydrology and Earth System Sciences, 2017, 21, 3377-3400.	1.9	8
87	Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts. Biogeosciences, 2017, 14, 5403-5424.	1.3	27
88	Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfallâ€induced landslides. Water Resources Research, 2016, 52, 1781-1799.	1.7	51
89	A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature. Water Resources Research, 2016, 52, 385-406.	1.7	53
90	Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles – upscaling an aggregate biophysical model. Global Change Biology, 2016, 22, 3141-3156.	4.2	120

#	Article	IF	CITATIONS
91	Experimental Evaluation of Earthworm and Plant Root Soil Penetration–Cavity Expansion Models Using Cone Penetrometer Analogs. Vadose Zone Journal, 2016, 15, 1-14.	1.3	13
92	Wind increases leaf water use efficiency. Plant, Cell and Environment, 2016, 39, 1448-1459.	2.8	66
93	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	1.3	445
94	Drainage mechanisms in porous media: From pistonâ€like invasion to formation of corner flow networks. Water Resources Research, 2016, 52, 8413-8436.	1.7	22
95	Tensile stress relaxation in unsaturated granular materials. Granular Matter, 2016, 18, 1.	1.1	5
96	Drainage dynamics controlled by corner flow: Application of the foam drainage equation. Water Resources Research, 2016, 52, 8402-8412.	1.7	8
97	Codetection of acoustic emissions during failure of heterogeneous media: New perspectives for natural hazard early warning. Geophysical Research Letters, 2016, 43, 1075-1083.	1.5	27
98	Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness. Scientific Reports, 2016, 6, 19409.	1.6	45
99	The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality?. Journal of Hydrometeorology, 2016, 17, 1705-1723.	0.7	43
100	Speed and attenuation of acoustic waves in snow: Laboratory experiments and modeling with Biot's theory. Cold Regions Science and Technology, 2016, 125, 1-11.	1.6	40
101	Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 2016, 13, 1097-1107.	2.7	23
102	Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces. PLoS ONE, 2016, 11, e0147394.	1.1	29
103	The formation of viscous limited saturation zones behind rapid drainage fronts in porous media. Water Resources Research, 2015, 51, 9862-9890.	1.7	11
104	Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resources Research, 2015, 51, 3419-3436.	1.7	140
105	Effects of hydromechanical loading history and antecedent soil mechanical damage on shallow landslide triggering. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1990-2015.	1.0	22
106	Adsorption and Capillary Processes in Variably Saturated Porous Media-Pore Scale Hydrostatic and Hydrodynamic Considerations. SSSA Special Publication Series, 2015, , 1-50.	0.2	0
107	Turbulenceâ€induced thermal signatures over evaporating bare soil surfaces. Geophysical Research Letters, 2015, 42, 5325-5336.	1.5	8
108	Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces. Journal of Hydrology, 2015, 530, 103-116.	2.3	22

#	Article	IF	CITATIONS
109	Microgravity Oxygen Diffusion and Water Retention Measurements in Unsaturated Porous Media aboard the International Space Station. Vadose Zone Journal, 2015, 14, 1-19.	1.3	8
110	Effects of stomata clustering on leaf gas exchange. New Phytologist, 2015, 207, 1015-1025.	3.5	64
111	Natural length scales define the range of applicability of the Richards equation for capillary flows. Water Resources Research, 2015, 51, 7130-7144.	1.7	37
112	Monitoring and prediction in early warning systems for rapid mass movements. Natural Hazards and Earth System Sciences, 2015, 15, 905-917.	1.5	107
113	Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resources Research, 2015, 51, 9804-9827.	1.7	91
114	Failure criterion for materials with spatially correlated mechanical properties. Physical Review E, 2015, 91, 032134.	0.8	10
115	Linking evaporative fluxes from bare soil across surface viscous sublayer with the Monin–Obukhov atmospheric flux-profile estimates. Journal of Hydrology, 2015, 525, 684-693.	2.3	29
116	Evaporation from Wavy Porous Surfaces into Turbulent Airflows. Transport in Porous Media, 2015, 110, 225-250.	1.2	25
117	Thermal signatures of turbulent airflows interacting with evaporating thin porous surfaces. International Journal of Heat and Mass Transfer, 2015, 87, 429-446.	2.5	26
118	Drying of Porous Media. Transport in Porous Media, 2015, 110, 171-173.	1.2	8
119	Comment on "Column-scale unsaturated hydraulic conductivity estimates in coarse-textured homogeneous and layered soils derived under steady-state evaporation from a water table―by M. Sadeghi, M. Tuller, M.R. Gohardoust and S.B. Jones. Journal of Hydrology, 2015, 529, 1274-1276.	2.3	3
120	Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils. PLoS ONE, 2015, 10, e0128914.	1.1	67
121	Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 2014, 50, 7406-7429.	1.7	73
122	Modeling and analysis of evaporation processes from porous media on the REV scale. Water Resources Research, 2014, 50, 1059-1079.	1.7	54
123	Energy partitioning dynamics of drying terrestrial surfaces. Journal of Hydrology, 2014, 519, 1257-1270.	2.3	36
124	The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics. Water Resources Research, 2014, 50, 4787-4802.	1.7	120
125	Mechanisms for acoustic emissions generation during granular shearing. Granular Matter, 2014, 16, 627-640.	1.1	48
126	Inertial forces affect fluid front displacement dynamics in a pore-throat network model. Physical Review E, 2014, 90, 023019.	0.8	57

#	Article	IF	CITATIONS
127	Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale. Water Resources Research, 2014, 50, 7780-7799.	1.7	45
128	Pore scale dynamics underlying the motion of drainage fronts in porous media. Water Resources Research, 2014, 50, 8441-8457.	1.7	43
129	Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces. Scientific Reports, 2014, 4, 6757.	1.6	21
130	Mechanical interactions between neighbouring roots during pullout tests. Plant and Soil, 2013, 367, 391-406.	1.8	61
131	Colloid mobilization by fluid displacement fronts in channels. Journal of Colloid and Interface Science, 2013, 406, 44-50.	5.0	58
132	Shearâ€induced force fluctuations and acoustic emissions in granular material. Journal of Geophysical Research: Solid Earth, 2013, 118, 6086-6098.	1.4	54
133	Effect of wetness patchiness on evaporation dynamics from drying porous surfaces. Water Resources Research, 2013, 49, 8250-8262.	1.7	29
134	Hydration dynamics promote bacterial coexistence on rough surfaces. ISME Journal, 2013, 7, 395-404.	4.4	76
135	Evaporation rates across a convective air boundary layer are dominated by diffusion. Water Resources Research, 2013, 49, 1602-1610.	1.7	92
136	An interdisciplinary approach towards improved understanding of soil deformation during compaction. Soil and Tillage Research, 2013, 128, 61-80.	2.6	78
137	Drying patterns of porous media containing wettability contrasts. Journal of Colloid and Interface Science, 2013, 391, 135-141.	5.0	30
138	The foam drainage equation for unsaturated flow in porous media. Water Resources Research, 2013, 49, 6258-6265.	1.7	9
139	Temperature dynamics during nonisothermal evaporation from drying porous surfaces. Water Resources Research, 2013, 49, 7339-7349.	1.7	38
140	Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization. Water Resources Research, 2013, 49, 6266-6285.	1.7	56
141	Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 2013, 12, 1-16.	1.3	286
142	Evaporation from porous surfaces into turbulent airflows: Coupling eddy characteristics with pore scale vapor diffusion. Water Resources Research, 2013, 49, 8432-8442.	1.7	51
143	Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research, 2013, 49, 7992-8004.	1.7	75

#	Article	IF	CITATIONS
145	Conceptual and Parametric Representation of Soil Hydraulic Properties: A Review. Vadose Zone Journal, 2013, 12, 1-20.	1.3	118
146	Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations. PLoS ONE, 2013, 8, e54231.	1.1	156
147	<i>Vadose Zone Journal</i> : The First Ten Years. Vadose Zone Journal, 2013, 12, 1-3.	1.3	0
148	Plant Water Use Efficiency over Geological Time – Evolution of Leaf Stomata Configurations Affecting Plant Gas Exchange. PLoS ONE, 2013, 8, e67757.	1.1	27
149	Fluid Depletion in Shear Bands. Physical Review Letters, 2012, 109, 248001.	2.9	28
150	Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography. Physical Review E, 2012, 85, 016317.	0.8	17
151	A Hydration-Based Biophysical Index for the Onset of Soil Microbial Coexistence. Scientific Reports, 2012, 2, 881.	1.6	27
152	Morphology, propagation dynamics and scaling characteristics of drying fronts in porous media. Geophysical Research Letters, 2012, 39, .	1.5	29
153	Beyond Earth: Designing Root Zone Environments for Reduced Gravity Conditions. Vadose Zone Journal, 2012, 11, .	1.3	19
154	Fiber bundle models for stress release and energy bursts during granular shearing. Physical Review E, 2012, 86, 061307.	0.8	16
155	Role of Mixed Boundaries on Flow in Open Capillary Channels with Curved Air–Water Interfaces. Langmuir, 2012, 28, 12753-12761.	1.6	11
156	Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores. Water Resources Research, 2012, 48, .	1.7	152
157	Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology, 2012, 171-172, 190-200.	1.1	88
158	Hydromechanical triggering of landslides: From progressive local failures to mass release. Water Resources Research, 2012, 48, .	1.7	82
159	Characteristics of acoustic emissions induced by fluid front displacement in porous media. Water Resources Research, 2012, 48, .	1.7	27
160	Pore scale mechanisms for enhanced vapor transport through partially saturated porous media. Water Resources Research, 2012, 48, .	1.7	53
161	Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review. Earth-Science Reviews, 2012, 112, 97-114.	4.0	133
162	Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. Journal of Colloid and Interface Science, 2012, 377, 406-415.	5.0	114

#	Article	IF	CITATIONS
163	Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. Journal of Geophysical Research, 2011, 116, .	3.3	74
164	An analytical fiber bundle model for pullout mechanics of root bundles. Journal of Geophysical Research, 2011, 116, .	3.3	65
165	Evaporation suppression from water reservoirs: Efficiency considerations of partial covers. Water Resources Research, 2011, 47, .	1.7	57
166	What determines drying rates at the onset of diffusion controlled stageâ€2 evaporation from porous media?. Water Resources Research, 2011, 47, .	1.7	130
167	Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resources Research, 2011, 47, .	1.7	58
168	Spatial statistical modeling of shallow landslides—Validating predictions for different landslide inventories and rainfall events. Geomorphology, 2011, 133, 11-22.	1.1	64
169	Quantification of subsurface thermal regimes beneath evaporating porous surfaces. International Journal of Heat and Mass Transfer, 2011, 54, 4193-4202.	2.5	23
170	Kirkham's Legacy and Contemporary Challenges in Soil Physics Research. Soil Science Society of America Journal, 2011, 75, 1589-1601.	1.2	40
171	Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands. Earth Surface Processes and Landforms, 2010, 35, 354-367.	1.2	199
172	Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecological Engineering, 2010, 36, 285-291.	1.6	209
173	Aqueous films limit bacterial cell motility and colony expansion on partially saturated rough surfaces. Environmental Microbiology, 2010, 12, 1363-1373.	1.8	79
174	Hydration-controlled bacterial motility and dispersal on surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14369-14372.	3.3	182
175	The Reliability and Validity of the Aggregate Neurobehavioral Student Health and Educational Review Parent's Questionnaire (ANSER-PQ). Journal of Child Neurology, 2010, 25, 157-164.	0.7	5
176	Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface. Physical Review E, 2010, 81, 046308.	0.8	64
177	Evaporation from layered porous media. Journal of Geophysical Research, 2010, 115, .	3.3	79
178	Rootâ€soil mechanical interactions during pullout and failure of root bundles. Journal of Geophysical Research, 2010, 115, .	3.3	126
179	Comment on "A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow―by A. Peters and W. Durner. Water Resources Research, 2010, 46, .	1.7	9
180	Evaporation from partially covered water surfaces. Water Resources Research, 2010, 46, .	1.7	47

#	Article	IF	CITATIONS
181	Pore-Scale Analysis of Evaporation and Condensation Dynamics in Porous Media. Langmuir, 2010, 26, 13924-13936.	1.6	49
182	Thermoâ€evaporative fluxes from heterogeneous porous surfaces resolved by infrared thermography. Water Resources Research, 2010, 46, .	1.7	45
183	Liquid Behavior in Partially Saturated Porous Media under Variable Gravity. Soil Science Society of America Journal, 2009, 73, 341-350.	1.2	17
184	Distribution And Storage Characterization Of Soil Solution For Drip Irrigation. , 2009, , .		0
185	Porous Plant Growth Media Design Considerations for Lunar and Martian Habitats. SAE International Journal of Aerospace, 2009, 4, 55-62.	4.0	2
186	Gravity-driven slug motion in capillary tubes. Physics of Fluids, 2009, 21, .	1.6	21
187	Dynamics of Microbial Growth and Coexistence on Variably Saturated Rough Surfaces. Microbial Ecology, 2009, 58, 262-275.	1.4	36
188	Distribution and storage characterization of soil solution for drip irrigation. Irrigation Science, 2009, 27, 277-288.	1.3	22
189	Evaporation and capillary coupling across vertical textural contrasts in porous media. Physical Review E, 2009, 80, 046318.	0.8	90
190	Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resources Research, 2009, 45, .	1.7	128
191	Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides. Water Resources Research, 2009, 45, .	1.7	65
192	Characteristics of evaporation from partially wettable porous media. Water Resources Research, 2009, 45, .	1.7	94
193	Scaling of capillary, gravity and viscous forces affecting flow morphology in unsaturated porous media. Advances in Water Resources, 2008, 31, 1129-1136.	1.7	84
194	Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains. FEMS Microbiology Ecology, 2008, 64, 1-8.	1.3	44
195	Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resources Research, 2008, 44, .	1.7	171
196	Evolution of unsaturated hydraulic conductivity of aggregated soils due to compressive forces. Water Resources Research, 2008, 44, .	1.7	27
197	Characteristic lengths affecting evaporative drying of porous media. Physical Review E, 2008, 77, 056309.	0.8	358
198	Effects of hydrophobic layers on evaporation from porous media. Geophysical Research Letters, 2008, 35	1.5	78

#	Article	IF	CITATIONS
199	Air entry–based characteristic length for estimation of permeability of variably compacted earth materials. Water Resources Research, 2008, 44, .	1.7	14
200	The Porous Surface Model, a Novel Experimental System for Online Quantitative Observation of Microbial Processes under Unsaturated Conditions. Applied and Environmental Microbiology, 2008, 74, 5195-5200.	1.4	48
201	2. Soil water concepts. Developments in Agricultural Engineering, 2007, , 27-59.	0.1	6
202	Hydraulic contacts controlling water flow across porous grains. Physical Review E, 2007, 76, 026311.	0.8	11
203	Extracellular Polymeric Substances Affecting Pore-Scale Hydrologic Conditions for Bacterial Activity in Unsaturated Soils. Vadose Zone Journal, 2007, 6, 298-305.	1.3	178
204	Permeability of deformable soft aggregated earth materials: From single pore to sample cross section. Water Resources Research, 2007, 43, .	1.7	6
205	Microbial growth on partially saturated rough surfaces: Simulations in idealized roughness networks. Water Resources Research, 2007, 43, .	1.7	22
206	Measurements and Modeling of Variable Gravity Effects on Water Distribution and Flow in Unsaturated Porous Media. Vadose Zone Journal, 2007, 6, 713-724.	1.3	22
207	Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Advances in Water Resources, 2007, 30, 1505-1527.	1.7	513
208	Traveling liquid bridges in unsaturated fractured porous media. Transport in Porous Media, 2007, 68, 129-151.	1.2	28
209	Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resources Research, 2006, 42, .	1.7	132
210	Deformation and permeability of aggregated soft earth materials. Journal of Geophysical Research, 2006, 111, .	3.3	26
211	Geometrical factors and interfacial processes affecting complex dielectric permittivity of partially saturated porous media. Water Resources Research, 2006, 42, .	1.7	68
212	Comment on "Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method―by Hai Huang, Paul Meakin, and Moubin Liu. Water Resources Research, 2006, 42, .	1.7	4
213	Anisotropy factor of saturated and unsaturated soils. Water Resources Research, 2006, 42, .	1.7	33
214	Reply to comment by Stefan Finsterle on "Seepage into drifts and tunnels in unsaturated fractured rock― Water Resources Research, 2006, 42, .	1.7	0
215	Patient Satisfaction and Aesthetic Results After Pedicled Transverse Rectus Abdominis Muscle Flap for Breast Reconstruction. Annals of Surgical Oncology, 2006, 13, 1739-1746.	0.7	14
216	Linking drainage front morphology with gaseous diffusion in unsaturated porous media: A lattice Boltzmann study. Physical Review E, 2006, 74, 056304.	0.8	25

#	Article	IF	CITATIONS
217	Plant water accessibility function: A design and management tool for trickle irrigation. Agricultural Water Management, 2006, 82, 45-62.	2.4	10
218	Water balance for Great Basin phreatophytes derived from eddy covariance, soil water, and water table measurements. Journal of Hydrology, 2006, 329, 595-605.	2.3	61
219	Calibração da Reflectometria no DomÃnio do Tempo (TDR) para a estimativa da concentração da solução no solo. Engenharia Agricola, 2006, 26, 282-291.	0.2	22
220	Editorial: The Future of Vadose Zone Journal. Vadose Zone Journal, 2006, 5, 125-125.	1.3	2
221	Theoretical Analysis of Fluid Inclusions for In Situ Soil Stress and Deformation Measurements. Soil Science Society of America Journal, 2006, 70, 1441-1452.	1.2	22
222	Interfacial interactions and colloid retention under steady flows in a capillary channel. Journal of Colloid and Interface Science, 2006, 303, 171-184.	5.0	55
223	Size and shape evolution of pores in a viscoplastic matrix under compression. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30, 1259-1281.	1.7	11
224	Deformation of Pores in Viscoplastic Soil Material. International Journal of Geomechanics, 2006, 6, 108-118.	1.3	15
225	SONDAS DE TDR PARA A ESTIMATIVA DA UMIDADE E DA CONDUTIVIDADE ELÉTRICA DO SOLO. Irriga, 2006, 1 12-25.	1 _{0.2}	15
226	Standardizing Characterization of Electromagnetic Water Content Sensors: Part 1. Methodology. Vadose Zone Journal, 2005, 4, 1048-1058.	1.3	99
227	POROUS MEDIA MATRIC POTENTIAL AND WATER CONTENT MEASUREMENTS DURING PARABOLIC FLIGHT. Habitation, 2005, 10, 117-126.	0.2	7
228	Ground-penetrating radar measurement of crop and surface water content dynamics. Remote Sensing of Environment, 2005, 96, 119-134.	4.6	29
229	Continuous Soil Carbon Dioxide and Oxygen Measurements and Estimation of Gradientâ€Based Gaseous Flux. Vadose Zone Journal, 2005, 4, 1161-1169.	1.3	77
230	WATER POTENTIAL. , 2005, , 270-277.		11
231	WATER RETENTION AND CHARACTERISTIC CURVE. , 2005, , 278-289.		40
232	CAPILLARITY. , 2005, , 155-164.		9
233	Thermal and Geometrical Effects on Bulk Permittivity of Porous Mixtures Containing Bound Water. , 2005, , 71-92.		4
234	Lattice Boltzmann method for homogeneous and heterogeneous cavitation. Physical Review E, 2005, 71, 046703.	0.8	64

#	Article	IF	CITATIONS
235	Seepage into drifts and tunnels in unsaturated fractured rock. Water Resources Research, 2005, 41, .	1.7	9
236	Aquatic habitats and diffusion constraints affecting microbial coexistence in unsaturated porous media. Water Resources Research, 2005, 41, .	1.7	46
237	On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials. Water Resources Research, 2005, 41, .	1.7	55
238	Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods. Water Resources Research, 2005, 41, W08410.	1.7	33
239	Liquid fragmentation and intermittent flow regimes in unsaturated fractured media. Water Resources Research, 2005, 41, .	1.7	34
240	Water films and scaling of soil characteristic curves at low water contents. Water Resources Research, 2005, 41, .	1.7	253
241	Physical and Hydraulic Properties of Baked Ceramic Aggregates Used for Plant Growth Medium. Journal of the American Society for Horticultural Science, 2005, 130, 767-774.	0.5	21
242	A Time Domain Reflectometry Coaxial Cell for Manipulation and Monitoring of Water Content and Electrical Conductivity in Variably Saturated Porous Media. Vadose Zone Journal, 2005, 4, 977-982.	1.3	14
243	Flow and Distribution of Fluid Phases through Porous Plant Growth Media in Microgravity. , 2004, , 325.		3
244	Response to "Comments on 'Low Frequency Impedance Behavior of Montmorillonite Suspensions. Soil Science Society of America Journal, 2004, 68, 1024-1024.	1.2	0
245	A Variableâ€Volume TDR Probe for Measuring Water Content in Large Soil Volumes. Soil Science Society of America Journal, 2004, 68, 25-31.	1.2	11
246	Automated Systems for Oxygen Diffusion Measurements in Porous Media at 1g and 0g. , 2004, , 368.		0
247	Comment on "Layer averaged Richards' equation with lateral flow―by Praveen Kumar. Advances in Water Resources, 2004, 27, 1041-1042.	1.7	3
248	Relationship between temperature sensitivity of capillary pressure and soil particle size. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	2
249	Lattice Boltzmann method for modeling liquid-vapor interface configurations in porous media. Water Resources Research, 2004, 40, .	1.7	118
250	Correction to "Relationship between temperature sensitivity of capillary pressure and soil particle size― Geophysical Research Letters, 2004, 31, .	1.5	0
251	Ground-penetrating radar measurement of soil water content dynamics using a suspended horn antenna. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 1695-1705.	2.7	55
252	Liquid-Gas Interfacial Configurations in Angular Pores under Microgravity. , 2004, , 346.		1

Liquid-Gas Interfacial Configurations in Angular Pores under Microgravity. , 2004, , 346.

1

#	Article	IF	CITATIONS
253	Frequency Domain Analysis for Extending Time Domain Reflectometry Water Content Measurement in Highly Saline Soils. Soil Science Society of America Journal, 2004, 68, 1568-1577.	1.2	54
254	Modeled effects on permittivity measurements of water content in high surface area porous media. Physica B: Condensed Matter, 2003, 338, 284-290.	1.3	32
255	Hydraulic conductivity of partially saturated fractured porous media: flow in a cross-section. Advances in Water Resources, 2003, 26, 883-898.	1.7	30
256	Stress-induced volume reduction of isolated pores in wet soil. Water Resources Research, 2003, 39, .	1.7	10
257	Reply to comment by N. Kartal Toker, John T. Germaine, and Patricia J. Culligan on "Cavitation during desaturation of porous media under tension― Water Resources Research, 2003, 39, .	1.7	9
258	Hydraulic functions for swelling soils: pore scale considerations. Journal of Hydrology, 2003, 272, 50-71.	2.3	81
259	Invasion percolation of single component, multiphase fluids with lattice Boltzmann models. Physica B: Condensed Matter, 2003, 338, 298-303.	1.3	40
260	A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone Journal, 2003, 2, 444-475.	1.3	60
261	Near-Surface Soil Water Content Measurements Using Horn Antenna Radar: Methodology and Overview. Vadose Zone Journal, 2003, 2, 500-510.	1.3	1
262	A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone Journal, 2003, 2, 444-475.	1.3	729
263	Nearâ€Surface Soil Water Content Measurements Using Horn Antenna Radar: Methodology and Overview. Vadose Zone Journal, 2003, 2, 500-510.	1.3	39
264	Low Frequency Impedance Behavior of Montmorillonite Suspensions. Soil Science Society of America Journal, 2003, 67, 518-526.	1.2	15
265	Gas Diffusion Measurement and Modeling in Coarseâ€Textured Porous Media. Vadose Zone Journal, 2003, 2, 602-610.	1.3	34
266	Pore‧pace Dynamics in a Soil Aggregate Bed under a Static External Load. Soil Science Society of America Journal, 2003, 67, 12-19.	1.2	20
267	Experimental and Numerical Evaluation of Analytical Volume Balance Model for Soil Water Dynamics under Drip Irrigation. Soil Science Society of America Journal, 2003, 67, 1657-1671.	1.2	31
268	Gas Diffusion Measurement and Modeling in Coarse-Textured Porous Media. Vadose Zone Journal, 2003, 2, 602-610.	1.3	3
269	Pore-Space Dynamics in a Soil Aggregate Bed under a Static External Load. Soil Science Society of America Journal, 2003, 67, 12.	1.2	8
270	Low Frequency Impedance Behavior of Montmorillonite Suspensions. Soil Science Society of America Journal, 2003, 67, 518.	1.2	14

#	Article	IF	CITATIONS
271	A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone Journal, 2003, 2, 444.	1.3	54
272	Near-Surface Soil Water Content Measurements Using Horn Antenna Radar. Vadose Zone Journal, 2003, 2, 500.	1.3	2
273	Analytical Models for Soil Pore‧ize Distribution After Tillage. Soil Science Society of America Journal, 2002, 66, 1104-1114.	1.2	47
274	Using an Expectation—Maximization Algorithm to Obtain Dielectric Relaxation-Time Spectra of Aqueous Montmorillonite Clay Suspensions. Applied Spectroscopy, 2002, 56, 1470-1474.	1.2	1
275	Surface area, geometrical and configurational effects on permittivity of porous media. Journal of Non-Crystalline Solids, 2002, 305, 247-254.	1.5	36
276	Unsaturated Hydraulic Conductivity of Structured Porous Media: A Review of Liquid Configuration-Based Models. Vadose Zone Journal, 2002, 1, 14-37.	1.3	20
277	Effect of gravity and model characteristics on steady infiltration from spheroids. Geophysical Monograph Series, 2002, , 65-70.	0.1	2
278	Unsaturated Hydraulic Conductivity of Structured Porous Media: A Review of Liquid Configuration–Based Models. Vadose Zone Journal, 2002, 1, 14-37.	1.3	71
279	Time domain reflectometry measurement principles and applications. Hydrological Processes, 2002, 16, 141-153.	1.1	278
280	Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 2002, 130, 173-184.	0.9	219
281	Modeling post-tillage soil structural dynamics: a review. Soil and Tillage Research, 2002, 64, 41-59.	2.6	129
282	Modeling the dynamics of the soil pore-size distribution. Soil and Tillage Research, 2002, 64, 61-78.	2.6	108
283	Cavitation during desaturation of porous media under tension. Water Resources Research, 2002, 38, 19-1-19-14.	1.7	102
284	Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space. Water Resources Research, 2001, 37, 1257-1276.	1.7	265
285	Thermodielectric effects on radar backscattering from wet soil. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 897-901.	2.7	9
286	Who Invented the Tensiometer?. Soil Science Society of America Journal, 2001, 65, 1-3.	1.2	37
287	Soil Water Characteristic Determination from Concurrent Water Content Measurements in Reference Porous Media. Soil Science Society of America Journal, 2001, 65, 1659-1666.	1.2	21
288	Rheological Properties of Wet Soils and Clays under Steady and Oscillatory Stresses. Soil Science Society of America Journal, 2001, 65, 624-637.	1.2	128

#	Article	IF	CITATIONS
289	Desempenho de diferentes guias de ondas para uso com o analisador de umidade TRASE. Revista Brasileira De Engenharia Agricola E Ambiental, 2001, 5, 81-87.	0.4	10
290	A discrete-fracture boundary integral approach to simulating coupled energy and moisture transport in a fractured porous medium. Geophysical Monograph Series, 2000, , 267-279.	0.1	9
291	MICROGRAVITY EFFECTS ON WATER SUPPLY AND SUBSTRATE PROPERTIES IN POROUS MATRIX ROOT SUPPORT SYSTEMS. Acta Astronautica, 2000, 47, 839-848.	1.7	27
292	Root zone solute dynamics under drip irrigation: A review. Plant and Soil, 2000, 222, 163-190.	1.8	155
293	WATER AND SOLUTE DYNAMICS UNDER A DRIP-IRRIGATED CROP: EXPERIMENTS AND ANALYTICAL MODEL. Transactions of the American Society of Agricultural Engineers, 2000, 43, 1597-1608.	0.9	51
294	Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resources Research, 2000, 36, 367-379.	1.7	83
295	Flow in unsaturated fractured porous media: Hydraulic conductivity of rough surfaces. Water Resources Research, 2000, 36, 1165-1177.	1.7	129
296	Stochastic model for posttillage soil pore space evolution. Water Resources Research, 2000, 36, 1641-1652.	1.7	96
297	Subsurface tension permeametry. Water Resources Research, 2000, 36, 2043-2053.	1.7	6
298	Comment on "On water vapor transport in field soils―by Anthony T. Cahill and Marc B. Parlange. Water Resources Research, 2000, 36, 3103-3105.	1.7	11
299	Dripping into subterranean cavities from unsaturated fractures under evaporative conditions. Water Resources Research, 2000, 36, 381-393.	1.7	24
300	Avaliação de parâmetros hidráulicos para modelos de distribuição de água no solo sob gotejamento. Pesquisa Agropecuaria Brasileira, 1999, 34, 651-657.	0.9	7
301	Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model. Water Resources Research, 1999, 35, 371-383.	1.7	227
302	The effect of vegetation on infiltration in shallow soils underlain by fissured bedrock. Journal of Hydrology, 1999, 218, 169-190.	2.3	24
303	A new soil metric potential sensor based on time domain reflectometry. Water Resources Research, 1999, 35, 3399-3407.	1.7	42
304	Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resources Research, 1999, 35, 3591-3605.	1.7	258
305	Frequency analysis of timeâ€domain reflectometry (TDR) with application to dielectric spectroscopy of soil constituents. Geophysics, 1999, 64, 707-718.	1.4	75
306	Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental evidence and hypothesis development. Water Resources Research, 1999, 35, 361-369.	1.7	216

#	Article	IF	CITATIONS
307	Microgravity effects on water flow and distribution in unsaturated porous media: Analyses of flight experiments. Water Resources Research, 1999, 35, 929-942.	1.7	56
308	Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resources Research, 1999, 35, 1949-1964.	1.7	505
309	Modelo de distribuição de água e de potencial matricial no solo sob gotejamento com extração de água por raÃzes. Pesquisa Agropecuaria Brasileira, 1999, 34, 227-234.	0.9	5
310	Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and Soil, 1998, 206, 123-136.	1.8	127
311	A capillary-driven root module for plant growth in microgravity. Advances in Space Research, 1998, 22, 1407-1412.	1.2	10
312	Particulated growth media for optimal liquid and gaseous fluxes to plant roots in microgravity. Advances in Space Research, 1998, 22, 1413-1418.	1.2	4
313	Design of Porous Media for Optimal Gas and Liquid Fluxes to Plant Roots. Soil Science Society of America Journal, 1998, 62, 563-573.	1.2	37
314	Nonlinear Parameter Estimation Using Spreadsheet Software. Journal of Natural Resources and Life Sciences Education, 1998, 27, 13-19.	0.3	127
315	Applicability of Analytical Solutions for Flow from Point Sources to Drip Irrigation Management. Soil Science Society of America Journal, 1997, 61, 1331-1341.	1.2	25
316	Annual mesoscale study of water balance in a Great Basin heterogeneous desert valley. Journal of Hydrology, 1997, 191, 223-244.	2.3	53
317	Effects of Spatially Variable Intake on Surface Irrigation Advance. Journal of Irrigation and Drainage Engineering - ASCE, 1996, 122, 122-130.	0.6	3
318	Reply [to "Comment on "In situ method for estimating subsurface unsaturated hydraulic conductivity―by Uri Shani and Dani Orâ€]. Water Resources Research, 1996, 32, 1897-1897.	1.7	0
319	Wetting-induced soil structural changes: The theory of liquid phase sintering. Water Resources Research, 1996, 32, 3041-3049.	1.7	53
320	Probability Distribution of Solute Travel Time for Convective Transport in Field-Scale Soils Under Unsteady and Nonuniform Flows. Water Resources Research, 1996, 32, 875-889.	1.7	9
321	A Parametric Model for Twoâ€Đimensional Water Uptake Intensity by Corn Roots under Drip Irrigation. Soil Science Society of America Journal, 1996, 60, 1039-1049.	1.2	91
322	Drip Irrigation in Heterogeneous Soils: Steady-State Field Experiments for Stochastic Model Evaluation. Soil Science Society of America Journal, 1996, 60, 1339-1349.	1.2	25
323	Soil Water Dynamics Under Drip Irrigation: Transient Flow and Uptake Models. Transactions of the American Society of Agricultural Engineers, 1996, 39, 2017-2025.	0.9	16
324	Flow and Uptake Patterns Affecting Soil Water Sensor Placement for Drip Irrigation Management. Transactions of the American Society of Agricultural Engineers, 1996, 39, 2007-2016.	0.9	38

#	Article	IF	CITATIONS
325	Prediction of surface irrigation advance using soil intake properties. Irrigation Science, 1996, 16, 159-167.	1.3	4
326	Stochastic Analysis of Soil Water Monitoring for Drip Irrigation Management in Heterogeneous Soils. Soil Science Society of America Journal, 1995, 59, 1222-1233.	1.2	20
327	In Situ Method for Estimating Subsurface Unsaturated Hydraulic Conductivity. Water Resources Research, 1995, 31, 1863-1870.	1.7	33
328	Stochastic estimation of plant-available soil water under fluctuating water table depths. Journal of Hydrology, 1994, 163, 43-64.	2.3	15
329	EVALUATION OF METHODS FOR DETERMINING SOIL-WATER RETENTIVITY AND UNSATURATED HYDRAULIC CONDUCTIVITY. Soil Science, 1994, 158, 1-13.	0.9	27
330	Stochastic modeling of unsaturated flow in heterogeneous soils with water uptake by plant roots: The Parallel Columns Model. Water Resources Research, 1993, 29, 619-631.	1.7	43
331	Stochastic analysis of unsaturated steady state flow through bounded heterogeneous formations. Water Resources Research, 1993, 29, 1141-1148.	1.7	36
332	Stochastic modeling of unsaturated flow in heterogeneous media with water uptake by plant roots: Tests of the parallel columns model under two-dimensional flow conditions. Water Resources Research, 1993, 29, 4109-4119.	1.7	10
333	Irrigation Scheduling Considering Soil Variability and Climatic Uncertainty: Simulation and Field Studies. Advanced Series in Agricultural Sciences, 1993, , 262-282.	0.2	2
334	Soil Water and Crop Yield Spatial Variability Induced by Irrigation Nonuniformity. Soil Science Society of America Journal, 1992, 56, 226-233.	1.2	34
335	Spatial and temporal soil water estimation considering soil variability and evapotranspiration uncertainty. Water Resources Research, 1992, 28, 803-814.	1.7	28
336	Error analyses of simplified unsaturated flow models under large uncertainty in hydraulic properties. Water Resources Research, 1992, 28, 2913-2924.	1.7	45
337	ORZS: Optimization of Root Zone Substrates for Microgravity. , 0, , .		6
338	Flow and Distribution of Fluid Phases through Porous Plant Growth Media in Microgravity: Progress to Date. , 0, , .		5
339	An Automated Oxygen Diffusion Measurement System for Porous Media in Microgravity. , 0, , .		2
340	Measurement of Porous Media Hydraulic Properties During Parabolic Flight Induced Microgravity. , 0, , .		6
341	Challenges to Understanding Fluid Behavior in Plant Growth Media Under Microgravity. , 0, , .		5
342	Modeling and Design of Optimal Growth Media from Plant - Based Gas and Liquid Fluxes. , 0, , .		8

#	Article	IF	CITATIONS
343	Providing Optimal Root-Zone Fluid Fluxes: Effects of Hysteresis on Capillary-Dominated Water Distributions in Reduced Gravity. , 0, , .		4
344	Wind effects on leaf transpiration challenge the concept of "potential evaporation". Proceedings of the International Association of Hydrological Sciences, 0, 371, 99-107.	1.0	11