
## Minerva M Carrasquillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3943011/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Alzheimer's disease and progressive supranuclear palsy share similar transcriptomic changes in<br>distinct brain regions. Journal of Clinical Investigation, 2022, 132, .                                                     | 3.9 | 13        |
| 2  | Transcript levels in plasma contribute substantial predictive value as potential Alzheimer's disease<br>biomarkers in African Americans. EBioMedicine, 2022, , 103929.                                                        | 2.7 | 2         |
| 3  | Investigating Heterogeneity and Neuroanatomic Correlates of Longitudinal Clinical Decline in Atypical Alzheimer Disease. Neurology, 2022, 98, .                                                                               | 1.5 | 12        |
| 4  | Plasma Biomarkers of Alzheimer's Disease in African Americans. Journal of Alzheimer's Disease, 2021,<br>79, 323-334.                                                                                                          | 1.2 | 11        |
| 5  | Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome. PLoS Genetics, 2021, 17, e1009224.                                                                                | 1.5 | 43        |
| 6  | Latent trait modeling of tau neuropathology in progressive supranuclear palsy. Acta<br>Neuropathologica, 2021, 141, 667-680.                                                                                                  | 3.9 | 5         |
| 7  | Impact of variant-level batch effects on identification of genetic risk factors in large sequencing studies. PLoS ONE, 2021, 16, e0249305.                                                                                    | 1.1 | 5         |
| 8  | Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease. Nature Communications, 2021, 12, 2311.                                                                  | 5.8 | 44        |
| 9  | Modulating innate immune activation states impacts the efficacy of specific Al <sup>2</sup> immunotherapy.<br>Molecular Neurodegeneration, 2021, 16, 32.                                                                      | 4.4 | 4         |
| 10 | Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid<br>pathology in Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 93.                                     | 2.4 | 9         |
| 11 | Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.                                                                                    | 2.4 | 75        |
| 12 | Deciphering cellular transcriptional alterations in Alzheimer's disease brains. Molecular<br>Neurodegeneration, 2020, 15, 38.                                                                                                 | 4.4 | 42        |
| 13 | Association of ABI3 and PLCG2 missense variants with disease risk and neuropathology in Lewy body disease and progressive supranuclear palsy. Acta Neuropathologica Communications, 2020, 8, 172.                             | 2.4 | 8         |
| 14 | Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 1372-1383.                                  | 0.4 | 34        |
| 15 | Comparative evaluation for the globin gene depletion methods for mRNA sequencing using the whole blood-derived total RNAs. BMC Genomics, 2020, 21, 890.                                                                       | 1.2 | 12        |
| 16 | <i>MAPT</i> haplotype–stratified GWAS reveals differential association for AD risk variants.<br>Alzheimer's and Dementia, 2020, 16, 983-1002.                                                                                 | 0.4 | 21        |
| 17 | Evaluation of Associations of Alzheimer's Disease Risk Variants that Are Highly Expressed in Microglia<br>with Neuropathological Outcome Measures. Journal of Alzheimer's Disease, 2019, 70, 659-666.                         | 1.2 | 6         |
| 18 | A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy<br>bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta<br>Neuropathologica, 2019, 138, 237-250. | 3.9 | 87        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight.<br>Genome Biology, 2019, 20, 97.                                                                                                 | 3.8 | 122       |
| 20 | Ethnoracial differences in Alzheimer's disease from the FLorida Autopsied Multiâ€Ethnic (FLAME)<br>cohort. Alzheimer's and Dementia, 2019, 15, 635-643.                                                                                  | 0.4 | 29        |
| 21 | Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau,<br>immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.                                                            | 9.4 | 1,962     |
| 22 | Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimer's and Dementia, 2018, 14, 352-366.                                                                                       | 0.4 | 116       |
| 23 | ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Molecular Neurodegeneration, 2018, 13, 53.                                                                          | 4.4 | 75        |
| 24 | TMEM106B haplotypes have distinct gene expression patterns in aged brain. Molecular Neurodegeneration, 2018, 13, 35.                                                                                                                     | 4.4 | 30        |
| 25 | Identification of missing variants by combining multiple analytic pipelines. BMC Bioinformatics, 2018, 19, 139.                                                                                                                          | 1.2 | 10        |
| 26 | Male-specific epistasis between WWC1 and TLN2 genes is associated with Alzheimer's disease.<br>Neurobiology of Aging, 2018, 72, 188.e3-188.e12.                                                                                          | 1.5 | 24        |
| 27 | Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathologica, 2018, 136, 709-727.                                                   | 3.9 | 47        |
| 28 | <i>ABCA7</i> loss-of-function variants, expression, and neurologic disease risk. Neurology: Genetics, 2017, 3, e126.                                                                                                                     | 0.9 | 26        |
| 29 | Comprehensive Screening for Disease Risk Variants in Early-Onset Alzheimer's Disease Genes in African<br>Americans Identifies Novel PSEN Variants. Journal of Alzheimer's Disease, 2017, 56, 1215-1222.                                  | 1.2 | 4         |
| 30 | Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017,<br>13, 727-738.                                                                                                                 | 0.4 | 166       |
| 31 | African American exome sequencing identifies potential risk variants at Alzheimer disease loci.<br>Neurology: Genetics, 2017, 3, e141.                                                                                                   | 0.9 | 25        |
| 32 | A candidate regulatory variant at the <i>TREM</i> gene cluster associates with decreased Alzheimer's<br>disease risk and increased <i>TREML1</i> and <i>TREM2</i> brain gene expression. Alzheimer's and<br>Dementia, 2017, 13, 663-673. | 0.4 | 48        |
| 33 | Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in<br>Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.                                                                            | 9.4 | 783       |
| 34 | Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative<br>diseases. Scientific Data, 2016, 3, 160089.                                                                                            | 2.4 | 361       |
| 35 | Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease. Alzheimer's and<br>Dementia, 2016, 12, 862-871.                                                                                                  | 0.4 | 93        |
| 36 | ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer's Neuronal Pathology. Journal of<br>Neuroscience, 2016, 36, 3848-3859.                                                                                                   | 1.7 | 109       |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.                                                                 | 1.5 | 174       |
| 38 | Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk<br>loci. Acta Neuropathologica, 2016, 132, 197-211.                                 | 3.9 | 49        |
| 39 | Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.                                                                         | 2.8 | 56        |
| 40 | Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiology of Aging, 2016,<br>37, 38-44.                                                                       | 1.5 | 23        |
| 41 | A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.                                                                    | 4.1 | 260       |
| 42 | Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to<br>Alzheimer's pathophysiology and susceptibility. Molecular Neurodegeneration, 2015, 10, 18. | 4.4 | 13        |
| 43 | Blood type gene locus has no influence on ACE association with Alzheimer's disease. Neurobiology of Aging, 2015, 36, 1767.e1-1767.e2.                                                   | 1.5 | 2         |
| 44 | TREM2 is associated with increased risk for Alzheimer's disease in African Americans. Molecular<br>Neurodegeneration, 2015, 10, 19.                                                     | 4.4 | 130       |
| 45 | Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurology: Genetics, 2015, 1, e15.                                                                               | 0.9 | 64        |
| 46 | Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.                                                          | 0.4 | 173       |
| 47 | Late-onset Alzheimer's risk variants in memory decline, incident mild cognitive impairment, and<br>Alzheimer's disease. Neurobiology of Aging, 2015, 36, 60-67.                         | 1.5 | 90        |
| 48 | Exonic Re-Sequencing of the Chromosome 2q24.3 Parkinson's Disease Locus. PLoS ONE, 2015, 10,<br>e0128586.                                                                               | 1.1 | 0         |
| 49 | Association of MAPT haplotypes with Alzheimer's disease risk and MAPT brain gene expression levels.<br>Alzheimer's Research and Therapy, 2014, 6, 39.                                   | 3.0 | 106       |
| 50 | Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology,<br>2014, 71, 1394.                                                                    | 4.5 | 166       |
| 51 | Late-onset Alzheimer disease genetic variants in posterior cortical atrophy and posterior AD.<br>Neurology, 2014, 82, 1455-1462.                                                        | 1.5 | 51        |
| 52 | Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta<br>Neuropathologica, 2014, 128, 411-421.                                                     | 3.9 | 119       |
| 53 | Genome-wide association interaction analysis for Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2436-2443.                                                                       | 1.5 | 61        |
| 54 | Evaluation of memory endophenotypes for association with CLU , CR1, and PICALM variants in black and white subjects. , 2014, 10, 205-213.                                               |     | 40        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9,<br>e94661.                                                                       | 1.1  | 155       |
| 56 | Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature<br>Genetics, 2013, 45, 1452-1458.                                          | 9.4  | 3,741     |
| 57 | <i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.                                                                                   | 13.9 | 2,385     |
| 58 | LRRTM3 Interacts with APP and BACE1 and Has Variants Associating with Late-Onset Alzheimer's Disease<br>(LOAD). PLoS ONE, 2013, 8, e64164.                                           | 1.1  | 12        |
| 59 | Linking Protective GAB2 Variants, Increased Cortical GAB2 Expression and Decreased Alzheimer's<br>Disease Pathology. PLoS ONE, 2013, 8, e64802.                                      | 1.1  | 13        |
| 60 | Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated<br>Variants. PLoS Genetics, 2012, 8, e1002707.                                            | 1.5  | 225       |
| 61 | Commentary on Functional analysis of APOE Locus genetic variation implicates regional enhancers in the regulation of both TOMM40 and APOE. Journal of Human Genetics, 2012, 57, 3-4. | 1.1  | 6         |
| 62 | The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of<br>Alzheimer's Disease, 2012, 28, 377-387.                                       | 1.2  | 53        |
| 63 | Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.                                                                 | 1.5  | 144       |
| 64 | Ataxin-2 repeat-length variation and neurodegeneration. Human Molecular Genetics, 2011, 20, 3207-3212.                                                                               | 1.4  | 147       |
| 65 | Investigating Statistical Epistasis in Complex Disorders. Journal of Alzheimer's Disease, 2011, 25, 635-644.                                                                         | 1.2  | 8         |
| 66 | A Multi-Center Study of ACE and the Risk of Late-Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 587-597.                                                       | 1.2  | 33        |
| 67 | Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.                                       | 9.4  | 1,676     |
| 68 | Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.                                          | 9.4  | 1,708     |
| 69 | Investigation of 15 of the top candidate genes for late-onset Alzheimer's disease. Human Genetics, 2011,<br>129, 273-282.                                                            | 1.8  | 57        |
| 70 | Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study. Molecular Neurodegeneration, 2011, 6, 54.                         | 4.4  | 67        |
| 71 | Replication of BIN1 Association with Alzheimer's Disease and Evaluation of Genetic Interactions.<br>Journal of Alzheimer's Disease, 2011, 24, 751-758.                               | 1.2  | 61        |
| 72 | Genome-wide Screen Identifies rs646776 near Sortilin as a Regulator of Progranulin Levels in Human<br>Plasma. American Journal of Human Genetics, 2010, 87, 890-897.                 | 2.6  | 130       |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.                   | 1.1 | 347       |
| 74 | Concordant Association of Insulin Degrading Enzyme Gene (IDE) Variants with IDE mRNA, Aß, and<br>Alzheimer's Disease. PLoS ONE, 2010, 5, e8764.                | 1.1 | 48        |
| 75 | Replication of CLU, CR1, and PICALM Associations With Alzheimer Disease. Archives of Neurology, 2010, 67, 961-4.                                               | 4.9 | 188       |
| 76 | Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nature Genetics, 2009, 41, 192-198.                          | 9.4 | 279       |
| 77 | Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.                 | 9.4 | 2,697     |
| 78 | Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nature Genetics, 2002, 32, 237-244. | 9.4 | 255       |
| 79 | High-Throughput Variation Detection and Genotyping Using Microarrays. Genome Research, 2001, 11, 1913-1925.                                                    | 2.4 | 258       |
| 80 | Allele Frequency Distributions in Pooled DNA Samples: Applications to Mapping Complex Disease Genes.<br>Genome Research, 1998, 8, 111-123.                     | 2.4 | 120       |
| 81 | SSLPs to map genetic differences between the 129 inbred strains and closed-colony, random-bred CD-I mice. Mammalian Genome, 1997, 8, 441-442.                  | 1.0 | 18        |