
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of PRKN-independent mitophagy. Autophagy, 2022, 18, 24-39.	9.1	74
2	Atg1 kinase activity links PAS dissolution to balanced Atg8 conjugation. Trends in Cell Biology, 2022, 32, 179-181.	7.9	1
3	Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119644119.	7.1	8
4	A tecpr2 knockout mouse exhibits age-dependent neuroaxonal dystrophy associated with autophagosome accumulation. Autophagy, 2021, 17, 3082-3095.	9.1	18
5	Lysosomal targeting of autophagosomes by the TECPR domain of TECPR2. Autophagy, 2021, 17, 3096-3108.	9.1	20
6	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
7	Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. Journal of Biological Chemistry, 2021, 297, 101339.	3.4	10
8	Selective autophagy bears bone. EMBO Journal, 2020, 39, e105965.	7.8	4
9	<i>De Novo</i> Phospholipid Synthesis Promotes Efficient Autophagy. Biochemistry, 2020, 59, 1011-1012.	2.5	4
10	Genetic defects of autophagy linked to disease. Progress in Molecular Biology and Translational Science, 2020, 172, 293-323.	1.7	10
11	ATG9 raises the BAR for PI4P in autophagy. Journal of Cell Biology, 2019, 218, 1432-1433.	5.2	5
12	Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy. Autophagy, 2019, 15, 347-351.	9.1	4
13	Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 2018, 19, 349-364.	37.0	1,933
14	Autophagy differentially regulates TNF receptor Fn14 by distinct mammalian Atg8 proteins. Nature Communications, 2018, 9, 3744.	12.8	14
15	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
16	SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy, 2017, 13, 1697-1708.	9.1	87
17	SNARE priming is essential for maturation of autophagosomes but not for their formation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12749-12754.	7.1	39
18	Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. PLoS ONE, 2017, 12, e0171351.	2.5	4

#	Article	IF	CITATIONS
19	A TRIM16-Galectin3 Complex Mediates Autophagy of Damaged Endomembranes. Developmental Cell, 2016, 39, 1-2.	7.0	16
20	Complex Relations Between Phospholipids, Autophagy, and Neutral Lipids. Trends in Biochemical Sciences, 2016, 41, 907-923.	7.5	41
21	A model-driven methodology for exploring complex disease comorbidities applied to autism spectrum disorder and inflammatory bowel disease. Journal of Biomedical Informatics, 2016, 63, 366-378.	4.3	14
22	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
23	Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO Journal, 2015, 34, 2117-2131.	7.8	175
24	Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1434-1439.	7.1	59
25	PLEKHM1: A Multiprotein Adaptor for the Endolysosomal System. Molecular Cell, 2015, 57, 1-3.	9.7	25
26	Applications of flow cytometry for measurement of autophagy. Methods, 2015, 75, 87-95.	3.8	24
27	Huntingtin facilitates selective autophagy. Nature Cell Biology, 2015, 17, 214-215.	10.3	18
28	Lipid droplets regulate autophagosome biogenesis. Autophagy, 2015, 11, 2130-2131.	9.1	18
29	TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. Molecular Cell, 2015, 60, 89-104.	9.7	111
30	Autophagy mediates nonselective <scp>RNA</scp> degradation in starving yeast. EMBO Journal, 2015, 34, 131-133.	7.8	4
31	Endocytosis and Autophagy: Exploitation or Cooperation?. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018358-a018358.	5.5	174
32	Getting ready for building: signaling and autophagosome biogenesis. EMBO Reports, 2014, 15, 839-852.	4.5	158
33	Paternal Mitochondrial Destruction after Fertilization Is Mediated by a Common Endocytic and Autophagic Pathway in Drosophila. Developmental Cell, 2014, 29, 305-320.	7.0	132
34	8-Nitro-cGMP—A New Player in Antibacterial Autophagy. Molecular Cell, 2013, 52, 767-768.	9.7	5
35	TECPR2. Autophagy, 2013, 9, 801-802.	9.1	20
36	The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays in Biochemistry, 2013, 55, 51-64.	4.7	215

#	Article	IF	CITATIONS
37	Foot-and-Mouth Disease Virus Induces Autophagosomes during Cell Entry via a Class III Phosphatidylinositol 3-Kinase-Independent Pathway. Journal of Virology, 2012, 86, 12940-12953.	3.4	93
38	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
39	Mutation in TECPR2 Reveals a Role for Autophagy in Hereditary Spastic Paraparesis. American Journal of Human Genetics, 2012, 91, 1065-1072.	6.2	147
40	Essential Role for the Mammalian ATG8 Isoform LC3C in Xenophagy. Molecular Cell, 2012, 48, 325-326.	9.7	13
41	Ubiquitin-like proteins and autophagy at a glance. Journal of Cell Science, 2012, 125, 2343-2348.	2.0	43
42	Mechanisms of Autophagosome Biogenesis. Current Biology, 2012, 22, R29-R34.	3.9	400
43	Inheriting Maternal mtDNA. Science, 2011, 334, 1069-1070.	12.6	20
44	Shedding Light on Mammalian Microautophagy. Developmental Cell, 2011, 20, 1-2.	7.0	31
45	LC3 and GATE-16ÂN Termini Mediate Membrane Fusion Processes Required for Autophagosome Biogenesis. Developmental Cell, 2011, 20, 444-454.	7.0	283
46	Autophagic Factors Cut to the Bone. Developmental Cell, 2011, 21, 808-810.	7.0	10
47	Atg8: an autophagy-related ubiquitin-like protein family. Genome Biology, 2011, 12, 226.	9.6	434
48	Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences, 2011, 36, 30-38.	7.5	1,076
49	Biogenesis and Cargo Selectivity of Autophagosomes. Annual Review of Biochemistry, 2011, 80, 125-156.	11.1	407
50	Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy, 2011, 7, 683-688.	9.1	53
51	Altered Autophagy in Human Adipose Tissues in Obesity. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E268-E277.	3.6	275
52	A New Autophagy-related Checkpoint in the Degradation of an ERAD-M Target. Journal of Biological Chemistry, 2011, 286, 11479-11491.	3.4	16
53	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	9.1	255
54	TBK1 Mediates Crosstalk Between the Innate Immune Response and Autophagy. Science Signaling, 2011, 4, pe39.	3.6	131

#	Article	IF	CITATIONS
55	LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO Journal, 2010, 29, 1792-1802.	7.8	631
56	A comprehensive glossary of autophagy-related molecules and processes. Autophagy, 2010, 6, 438-448.	9.1	144
57	Mammalian Atg8s: One is simply not enough. Autophagy, 2010, 6, 808-809.	9.1	12
58	p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18511-18516.	7.1	212
59	Lipophagy: Selective Catabolism Designed for Lipids. Developmental Cell, 2009, 16, 628-630.	7.0	84
60	A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Molecular Cell, 2009, 33, 505-516.	9.7	974
61	Chapter 9 Flow Cytometric Analysis of Autophagy in Living Mammalian Cells. Methods in Enzymology, 2009, 452, 131-141.	1.0	26
62	Chapter 8 Monitoring Starvationâ€Induced Reactive Oxygen Species Formation. Methods in Enzymology, 2009, 452, 119-130.	1.0	20
63	Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1. Autophagy, 2008, 4, 1054-1056.	9.1	46
64	The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. Journal of Cell Science, 2008, 121, 2685-2695.	2.0	156
65	Does bafilomycin A ₁ block the fusion of autophagosomes with lysosomes?. Autophagy, 2008, 4, 849-850.	9.1	422
66	Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy, 2008, 4, 621-628.	9.1	147
67	Identification of Essential Residues for the C-Terminal Cleavage of the Mammalian LC3: A Lesson from Yeast Atg8. Autophagy, 2007, 3, 48-50.	9.1	27
68	Oxidation as a Post-Translational Modification that Regulates Autophagy. Autophagy, 2007, 3, 371-373.	9.1	163
69	Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO Journal, 2007, 26, 1749-1760.	7.8	1,848
70	ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology, 2007, 17, 422-427.	7.9	865
71	Two newly identified sites in the ubiquitinâ€like protein Atg8 are essential for autophagy. EMBO Reports, 2006, 7, 635-642.	4.5	49
72	Microtubules Support Production of Starvation-induced Autophagosomes but Not Their Targeting and Fusion with Lysosomes. Journal of Biological Chemistry, 2006, 281, 36303-36316.	3.4	253

#	Article	IF	CITATIONS
73	GABARAP is not essential for GABA _A receptor targeting to the synapse. European Journal of Neuroscience, 2005, 22, 2644-2648.	2.6	78
74	The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. Journal of Experimental Botany, 2005, 56, 2839-2849.	4.8	162
75	Modulation of N-Ethylmaleimide-sensitive Factor Activity upon Amino Acid Deprivation. Journal of Biological Chemistry, 2005, 280, 16219-16226.	3.4	16
76	Geldanamycin-associated Inhibition of Intracellular Trafficking Is Attributed to a Co-purified Activity. Journal of Biological Chemistry, 2004, 279, 6847-6852.	3.4	14
77	Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 145-156.	4.1	23
78	The Prodomain of a Secreted Hydrophobic Mini-protein Facilitates Its Export from the Endoplasmic Reticulum by Hitchhiking on Sorting Receptors. Journal of Biological Chemistry, 2003, 278, 26311-26314.	3.4	33
79	The COOH Terminus of GATE-16, an Intra-Golgi Transport Modulator, Is Cleaved by the Human Cysteine Protease HsApg4A. Journal of Biological Chemistry, 2003, 278, 14053-14058.	3.4	69
80	Intra-Golgi Protein Transport Depends on a Cholesterol Balance in the Lipid Membrane. Journal of Biological Chemistry, 2003, 278, 53112-53122.	3.4	43
81	Sequential SNARE disassembly and GATE-16–GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. Journal of Cell Biology, 2002, 157, 1161-1173.	5.2	83
82	Intracellular Retention and Degradation of the Epidermal Growth Factor Receptor, Two Distinct Processes Mediated by Benzoquinone Ansamycins. Journal of Biological Chemistry, 2000, 275, 21850-21855.	3.4	41
83	Structure of GATE-16, Membrane Transport Modulator and Mammalian Ortholog of Autophagocytosis Factor Aut7p. Journal of Biological Chemistry, 2000, 275, 25445-25450.	3.4	136
84	A 56-kDa Selenium-binding Protein Participates in Intra-Golgi Protein Transport. Journal of Biological Chemistry, 2000, 275, 14457-14465.	3.4	117
85	Regulation of Intra-Golgi Membrane Transport by Calcium. Journal of Biological Chemistry, 2000, 275, 29233-29237.	3.4	77
86	Aut7p, a Soluble Autophagic Factor, Participates in Multiple Membrane Trafficking Processes. Journal of Biological Chemistry, 2000, 275, 32966-32973.	3.4	62
87	Erg30, a Vap-33–Related Protein, Functions in Protein Transport Mediated by Copi Vesicles. Journal of Cell Biology, 1999, 146, 301-312.	5.2	91
88	Isolation and Characterization of a Novel Low Molecular Weight Protein Involved in Intra-Golgi Traffic. Journal of Biological Chemistry, 1998, 273, 3105-3109.	3.4	69
89	Transport between and Golgi Cisternae Requires the Function of the Ras-related Protein Rab6. Journal of Biological Chemistry, 1996, 271, 16097-16103.	3.4	24
90	Differential Glycosylation and Intracellular Trafficking for the Long and Short Isoforms of the D2 Dopamine Receptor. Journal of Biological Chemistry, 1995, 270, 29819-29824.	3.4	75

#	Article	IF	CITATIONS
91	Stepwise assembly of functionally active transport vesicles. Cell, 1993, 75, 1015-1025.	28.9	296
92	Phosphorylation by Cyclic AMP-Dependent Protein Kinase Modulates Agonist Binding to the D2Dopamine Receptor. Journal of Neurochemistry, 1991, 56, 75-80.	3.9	26
93	Purification of the D-2 dopamine receptor from bovine striatum. Biochemical and Biophysical Research Communications, 1988, 156, 602-609.	2.1	25
94	Anti-idiotypes against a monoclonal anti-haloperidol antibody bind to dopamine receptor. Life Sciences, 1988, 42, 1987-1993.	4.3	22