Zhanyong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942382/publications.pdf Version: 2024-02-01

7HANYONG LI

#	Article	IF	CITATIONS
1	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	48.7	1,490
2	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	15.6	644
3	Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 10294-10301.	13.7	282
4	Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1977-1982.	13.7	273
5	Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Central Science, 2017, 3, 31-38.	11.3	222
6	Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship. Journal of the American Chemical Society, 2018, 140, 8652-8656.	13.7	181
7	Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework <i>via</i> Atomic Layer Deposition. ACS Nano, 2015, 9, 8484-8490.	14.6	158
8	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	13.7	158
9	Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework. ACS Applied Materials & Interfaces, 2016, 8, 20675-20681.	8.0	151
10	Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.	13.7	131
11	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	7.4	129
12	Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2017, 139, 15251-15258.	13.7	112
13	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112
14	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	13.7	94
15	Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catalysis, 2018, 8, 9848-9858.	11.2	91
16	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 909-913.	13.8	88
17	Stable Metal–Organic Framework-Supported Niobium Catalysts. Inorganic Chemistry, 2016, 55, 11954-11961.	4.0	85
18	Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions. Journal of the American Chemical Society, 2016, 138, 13513-13516.	13.7	78

ZHANYONG LI

#	Article	IF	CITATIONS
19	Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization. Journal of Physical Chemistry C, 2016, 120, 23576-23583.	3.1	78
20	Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.	13.7	74
21	Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2019, 9, 3198-3207.	11.2	68
22	Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000. Faraday Discussions, 2017, 201, 337-350.	3.2	66
23	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	6.7	56
24	Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 635-641.	8.0	52
25	Methionine Can Favor DNA Platination by <i>trans</i> â€Coordinated Platinum Antitumor Drugs. Angewandte Chemie - International Edition, 2009, 48, 8497-8500.	13.8	50
26	Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 15073-15078.	8.0	44
27	Heterogeneous Metal-Free Hydrogenation over Defect-Laden Hexagonal Boron Nitride. ACS Omega, 2016, 1, 1343-1354.	3.5	43
28	Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorganic Chemistry Frontiers, 2017, 4, 820-824.	6.0	38
29	Optimizing the Electronic Properties of Photoactive Anticancer Oxypyridine-Bridged Dirhodium(II,II) Complexes. Journal of the American Chemical Society, 2014, 136, 17058-17070.	13.7	37
30	Synthesis, X-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III). Journal of Inorganic Biochemistry, 2013, 129, 127-134.	3.5	36
31	Directional charge transfer and highly reducing and oxidizing excited states of new dirhodium(<scp>ii</scp> , <scp>ii</scp>) complexes: potential applications in solar energy conversion. Chemical Science, 2014, 5, 727-737.	7.4	31
32	Cationic dirhodium(<scp>ii</scp> , <scp>ii</scp>) complexes for the electrocatalytic reduction of CO ₂ to HCOOH. Chemical Communications, 2016, 52, 12175-12178.	4.1	27
33	Highly Selective Acetylene Semihydrogenation Catalyzed by Cu Nanoparticles Supported in a Metal–Organic Framework. ACS Applied Nano Materials, 2018, 1, 4413-4417.	5.0	27
34	Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improved <i>in vivo</i> anticancer activity. Journal of Liposome Research, 2015, 25, 78-87.	3.3	23
35	Theoretical insights into direct methane to methanol conversion over supported dicopper oxo nanoclusters. Catalysis Today, 2018, 312, 2-9.	4.4	23
36	New Rh ₂ (II,II) Architecture for the Catalytic Reduction of H ⁺ . Inorganic Chemistry, 2015, 54, 10042-10048.	4.0	21

ZHANYONG LI

#	Article	IF	CITATIONS
37	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	3.2	21
38	Application and Limitations of Nanocasting in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 2782-2790.	4.0	21
39	The Molecular Path Approaching the Active Site in Catalytic Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20090-20094.	13.7	21
40	Atomic layer deposition of Cu(<scp>i</scp>) oxide films using Cu(<scp>ii</scp>) bis(dimethylamino-2-propoxide) and water. Dalton Transactions, 2017, 46, 5790-5795.	3.3	19
41	New Thiadiazole Dioxide Bridging Ligand with a Stable Radical Form for the Construction of Magnetic Coordination Chains. Crystal Growth and Design, 2014, 14, 4878-4881.	3.0	18
42	Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. Journal of Chemical Physics, 2020, 152, 084703.	3.0	16
43	Photochemistry and DNA photocleavage by a new unsupported dirhodium(II,II) complex. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120128.	3.4	12
44	Unprecedented partial paddlewheel dirhodium methyl isocyanide compounds with unusual structural and electronic properties: a comprehensive experimental and theoretical study. Chemical Science, 2013, 4, 4470.	7.4	11
45	Enhancing the Catalytic Activity in the Solid State: Metal–Organic Frameworks to the Rescue. ACS Central Science, 2017, 3, 367-368.	11.3	5
46	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie, 2018, 130, 921-925.	2.0	3
47	Correction to "Computationally Guided Discovery of Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization― Journal of Physical Chemistry C, 2017, 121, 11975-11975.	3.1	2