Betty Benrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942305/publications.pdf

Version: 2024-02-01

			201674	1	168389
	76	3,148	27		53
	papers	citations	h-index		g-index
Ξ					
	70	70	70		2607
	78	78	78		2697
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Altered capsaicin levels in domesticated chili pepper varieties affect the interaction between a generalist herbivore and its ectoparasitoid. Journal of Pest Science, 2022, 95, 735-747.	3.7	10
2	The effect of squash domestication on a belowground tritrophic interaction. Plant-Environment Interactions, 2022, 3, 28-39.	1.5	5
3	The interaction between host and host plant influences the oviposition and performance of a generalist ectoparasitoid. Entomologia Experimentalis Et Applicata, 2021, 169, 133-144.	1.4	12
4	Domestication of Chili Pepper Has Altered Fruit Traits Affecting the Oviposition and Feeding Behavior of the Pepper Weevil. Insects, 2021, 12, 630.	2.2	1
5	Squash Varieties Domesticated for Different Purposes Differ in Chemical and Physical Defense Against Leaf and Root Herbivores. Frontiers in Agronomy, 2021, 3, .	3.3	4
6	Herbivory and jasmonate treatment affect reproductive traits in wild Lima bean, but without transgenerational effects. American Journal of Botany, 2021, 108, 2096-2104.	1.7	3
7	Parasitoids of leaf herbivores enhance plant fitness and do not alter caterpillarâ€induced resistance against seed beetles. Functional Ecology, 2020, 34, 586-596.	3.6	12
8	Non-crop habitats serve as a potential source of spotted-wing drosophila (Diptera: Drosophilidae) to adjacent cultivated highbush blueberries (Ericaceae). Canadian Entomologist, 2020, 152, 474-489.	0.8	15
9	First Insights into the Chemical Ecology of an Invasive Pest: Olfactory Preferences of the Viburnum Leaf Beetle (Coleoptera: Chrysomelidae). Environmental Entomology, 2020, 49, 364-369.	1.4	1
10	Bottomâ€up control of geographic variation in insect herbivory on wild cotton (<i>Gossypium) Tj ETQq0 0 0 rgB</i>	T /Oyerloc	:k 10 Tf 50 38
11	Species of Horismenus Walker (Hymenoptera: Eulophidae) associated with bruchid beetles (Coleoptera: Chrysomelidae: Bruchinae), including five new species. Zootaxa, 2019, 4585, zootaxa.4585.1.10.	0.5	3
12	Role of cyanogenic glycosides in the seeds of wild lima bean, Phaseolus lunatus: defense, plant nutrition or both?. Planta, 2019, 250, 1281-1292.	3.2	8
13	Host density and parasitoid presence interact and shape the outcome of a tritrophic interaction on seeds of wild lima bean. Scientific Reports, 2019, 9, 18591.	3.3	8
14	Differential Susceptibility of Wild and Cultivated Blueberries to an Invasive Frugivorous Pest. Journal of Chemical Ecology, 2019, 45, 286-297.	1.8	24
15	Effects of earlyâ€season insect herbivory on subsequent pathogen infection and ant abundance on wild cotton (<i>Gossypium hirsutum</i>). Journal of Ecology, 2019, 107, 1518-1529.	4.0	15
16	Changes in plant growth and seed production in wild lima bean in response to herbivory are attenuated by parasitoids. Oecologia, 2018, 187, 447-457.	2.0	36
17	Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants. Basic and Applied Ecology, 2018, 31, 10-20.	2.7	23
18	Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	45

#	Article	IF	CITATIONS
19	The Large Seed Size of Domesticated Lima Beans Mitigates Intraspecific Competition among Seed Beetle Larvae. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	15
20	Plant defence responses to volatile alert signals are populationâ€specific. Oikos, 2016, 125, 950-956.	2.7	21
21	Induced Floral and Extrafloral Nectar Production Affect Antâ€pollinator Interactions and Plant Fitness. Biotropica, 2016, 48, 342-348.	1.6	23
22	Effects of plant intraspecific diversity across three trophic levels: Underlying mechanisms and plant traits. American Journal of Botany, 2016, 103, 1810-1818.	1.7	17
23	Cascading effects of earlyâ€season herbivory on lateâ€season herbivores and their parasitoids. Ecology, 2016, 97, 1283-1297.	3.2	34
24	Plant species variation in bottomâ€up effects across three trophic levels: a test of traits and mechanisms. Ecological Entomology, 2015, 40, 676-686.	2.2	14
25	Uncovering Cryptic Parasitoid Diversity in Horismenus (Chalcidoidea, Eulophidae). PLoS ONE, 2015, 10, e0136063.	2.5	17
26	Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomologia Experimentalis Et Applicata, 2015, 157, 40-59.	1.4	47
27	Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hill.) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield. Biology and Fertility of Soils, 2015, 51, 749-755.	4.3	46
28	Specificity of induced defenses, growth, and reproduction in lima bean (<i>Phaseolus lunatus</i>) in response to multispecies herbivory. American Journal of Botany, 2015, 102, 1300-1308.	1.7	33
29	Crop Domestication and Its Impact on Naturally Selected Trophic Interactions. Annual Review of Entomology, 2015, 60, 35-58.	11.8	316
30	Variation in Cyanogenic Glycosides Across Populations of Wild Lima Beans (Phaseolus lunatus) Has No Apparent Effect on Bruchid Beetle Performance. Journal of Chemical Ecology, 2014, 40, 468-475.	1.8	32
31	QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theoretical and Applied Genetics, 2013, 126, 647-661.	3 . 6	33
32	Inconsistent genetic structure among members of a multitrophic system: did bruchid parasitoids (<i>Horismenus</i> spp.) escape the effects of bean domestication?. Bulletin of Entomological Research, 2013, 103, 182-192.	1.0	11
33	Bottom-Up and Top-Down Effects Influence Bruchid Beetle Individual Performance but Not Population Densities in the Field. PLoS ONE, 2013, 8, e55317.	2.5	23
34	Attraction of flower visitors to plants that express indirect defence can minimize ecological costs of ant–pollinator conflicts. Journal of Tropical Ecology, 2010, 26, 555-557.	1.1	19
35	Species diversity of larval parasitoids of the European grapevine moth (Lobesia botrana, Lepidoptera:) Tj ETQq1	1 0,78431 3.0	4 rgβT /Ονετ
36	Population genetic structure of two primary parasitoids of Spodoptera frugiperda (Lepidoptera), Chelonus insularis and Campoletis sonorensis (Hymenoptera): to what extent is the host plant important?. Molecular Ecology, 2010, 19, 2168-2179.	3.9	12

#	Article	lF	CITATIONS
37	The effect of host plant and isolation on the genetic structure of phytophagous insects: A preliminary study on a bruchid beetle. European Journal of Entomology, 2010, 107, 299-304.	1.2	5
38	Host plant cultivar of the grapevine moth Lobesia botrana affects the life history traits of an egg parasitoid. Biological Control, 2009, 50, 117-122.	3.0	40
39	Larval host plant origin modifies the adult oviposition preference of the female European grapevine moth Lobesia botrana. Die Naturwissenschaften, 2008, 95, 317-324.	1.6	47
40	The potential of native parasitoids for the control of Mexican bean beetles: A genetic and ecological approach. Biological Control, 2008, 47, 289-297.	3.0	18
41	ANTHROPOGENIC EFFECTS ON POPULATION GENETICS OF PHYTOPHAGOUS INSECTS ASSOCIATED WITH DOMESTICATED PLANTS. Evolution; International Journal of Organic Evolution, 2007, 61, 2986-2996.	2.3	22
42	Grape variety affects female but also male reproductive success in wild European grapevine moths. Ecological Entomology, 2007, 32, 747-753.	2.2	38
43	Phylogeographic support for horizontal gene transfer involving sympatric bruchid species. Biology Direct, 2006, 1, 21.	4.6	12
44	Phylogenetic relationships in the Neotropical bruchid genus Acanthoscelides (Bruchinae, Bruchidae,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf ! 24
45	Differences in nutritional quality of parts of Vitis vinifera berries affect fitness of the European grapevine moth. Entomologia Experimentalis Et Applicata, 2006, 119, 93-99.	1.4	20
46	Effects of seed type and bruchid genotype on the performance and oviposition behavior of Zabrotes subfasciatus (Coleoptera: Bruchidae). Insect Science, 2006, 13, 309-318.	3.0	12
47	Assessing larval food quality for phytophagous insects: are the facts as simple as they appear?. Functional Ecology, 2006, 20, 592-600.	3.6	83
48	Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Bulletin of Entomological Research, 2006, 96, 205-212.	1.0	68
49	Ecological distribution and niche segregation of sibling species: the case of bean beetles, Acanthoscelides obtectus Say and A. obvelatus Bridwell. Ecological Entomology, 2006, 31, 582-590.	2.2	15
50	Sibling species of bean bruchids: a morphological and phylogenetic study of Acanthoscelides obtectus Say and Acanthoscelides obvelatus Bridwell. Journal of Zoological Systematics and Evolutionary Research, 2005, 43, 29-37.	1.4	23
51	Ancient and recent evolutionary history of the bruchid beetle, Acanthoscelides obtectus Say, a cosmopolitan pest of beans. Molecular Ecology, 2005, 14, 1015-1024.	3.9	53
52	Interpopulation Variation in a Larval Parasitoid of Bruchids, Stenocorse bruchivora (Hymenoptera:) Tj ETQq0 0 0 r	gBT_/Over	lock 10 Tf 50
53	Horismenus species (Hymenoptera: Eulophidae) in a bruchid beetle parasitoid guild, including the description of a new species. Zootaxa, 2004, 548, 1–16.	0.5	20
54	Microsatellite markers in a complex of Horismenus sp. (Hymenoptera: Eulophidae), parasitoids of bruchid beetles. Molecular Ecology Notes, 2004, 4, 707-709.	1.7	5

#	Article	IF	CITATIONS
55	Isolation and characterization of polymorphic microsatellite loci in Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Molecular Ecology Notes, 2004, 4, 683-685.	1.7	4
56	Isolation and characterization of polymorphic microsatellite markers in Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). Molecular Ecology Notes, 2004, 4, 752-754.	1.7	5
57	Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biological Control, 2004, 30, 220-228.	3.0	37
58	Isolation and characterization of polymorphic microsatellite loci in Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae). Molecular Ecology Notes, 2003, 3, 117-119.	1.7	5
59	Oviposition Behavior and Conspecific Host Discrimination inDiachasmimorpha longicaudata(Hymenoptera: Braconidae), a Fruit Fly Parasitoid. Biocontrol Science and Technology, 2003, 13, 683-690.	1.3	32
60	Inter- and intraspecific genetic variation and differentiation in the sibling bean weevilsZabrotes subfasciatusandZ. sylvestris(Coleoptera: Bruchidae) from Mexico. Bulletin of Entomological Research, 2002, 92, 185-189.	1.0	6
61	Isolation and characterization of polymorphic microsatellite loci in Acanthoscelides obvelatus Bridwell (Coleoptera: Bruchidae). Molecular Ecology Notes, 2002, 3, 12-14.	1.7	8
62	Population Genetic Structure of <i>Acanthoscelides obtectus</i> and <i>A. obvelatus</i> (Coleoptera:) Tj ETQq0 (Entomological Society of America, 2000, 93, 1100-1107.	0 0 rgBT /0 2.5	Overlock 10 16
63	Biological Control of Anastrepha spp. (Diptera: Tephritidae) in Mango Orchards through Augmentative Releases of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae). Biological Control, 2000, 18, 216-224.	3.0	143
64	Functional Response and Superparasitism by <l>Diachasmimorpha longicaudata</l> (Hymenoptera: Braconidae), a Parasitoid of Fruit Flies (Diptera: Tephritidae). Annals of the Entomological Society of America, 2000, 93, 47-54.	2.5	90
65	Host Species and Host Plant Effects on Preference and Performance of <i>Diachasmimorpha longicaudata </i> (Hymenoptera: Braconidae). Environmental Entomology, 2000, 29, 87-94.	1.4	110
66	The Effects of Domestication of Brassica and Phaseoluson the Interaction between Phytophagous Insects and Parasitoids. Biological Control, 1998, 11, 130-140.	3.0	129
67	The influence of plants on insect parasitoids. , 1998, , 55-82.		42
68	Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience, 1998, 5, 321-333.	1.4	202
69	Aggregation facilitates larval growth in the neotropical nymphalid butterfly Chlosyne janais. Ecological Entomology, 1997, 22, 133-141.	2.2	120
70	THE SLOW-GROWTH–HIGH-MORTALITY HYPOTHESIS: A TEST USING THE CABBAGE BUTTERFLY. Ecology, 1997, 78, 987-999.	3.2	407
71	Pollination efficiency of native and invading Africanized bees in the tropical dry forest annual plant, Kallstroemia grandiflora Torr ex Gray. Apidologie, 1997, 28, 11-16.	2.0	19
72	Phytoalexins, Resistance Traits, and Domestication Status in Phaseolus coccineus and Phaseolus lunatus. Journal of Chemical Ecology, 1997, 23, 1997-2011.	1.8	28

#	Article	IF	CITATIONS
73	The influence of plant species on attraction and host acceptance inCotesia glomerata (Hymenoptera:) Tj ETQq1 1	0.784314 0.7	rgBT /Overl
74	Arthropod pest resurgence: an overview of potential mechanisms. Crop Protection, 1995, 14, 3-18.	2.1	206
75	Patterns of oviposition by Sandia xami (Lepidoptera, Lycaenidae) in relation to food plant apparency. Ecological Entomology, 1988, 13, 71-79.	2.2	13
76	Topâ€down cascading effects of seedâ€feeding beetles and their parasitoids on plants and leaf herbivores. Functional Ecology, 0, , .	3.6	1