
Dmitry Bratsun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3941751/publications.pdf Version: 2024-02-01

DMITDY RDATSLIN

#	Article	IF	CITATIONS
1	Delay-induced stochastic oscillations in gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14593-14598.	7.1	498
2	On Marangoni convective patterns driven by an exothermic chemical reaction in two-layer systems. Physics of Fluids, 2004, 16, 1082-1096.	4.0	61
3	Concentration-dependent diffusion instability in reactive miscible fluids. Physical Review E, 2015, 92, 011003.	2.1	41
4	Development of Concentration-Dependent Diffusion Instability in Reactive Miscible Fluids Under Influence of Constant or Variable Inertia. Microgravity Science and Technology, 2016, 28, 575-585.	1.4	35
5	Co-symmetry breakdown in problems of thermal convection in porous medium. Physica D: Nonlinear Phenomena, 1995, 82, 398-417.	2.8	30
6	Control of chemo-hydrodynamic pattern formation by external localized cooling. Europhysics Letters, 2005, 69, 746-752.	2.0	29
7	Buoyancy-driven pattern formation in reactive immiscible two-layer systems. Chemical Engineering Science, 2011, 66, 5723-5734.	3.8	29
8	Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. Journal of Biological Physics, 2016, 42, 107-132.	1.5	23
9	Non-linear dynamics and pattern formation in a vertical fluid layer heated from the side. International Journal of Heat and Fluid Flow, 2003, 24, 835-852.	2.4	21
10	Extended classification of the buoyancy-driven flows induced by a neutralization reaction in miscible fluids. Part 1. Experimental study. Journal of Fluid Mechanics, 2021, 916, .	3.4	20
11	Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids. Physical Review E, 2017, 96, 053106.	2.1	19
12	Adaptive Micromixer Based on the Solutocapillary Marangoni Effect in a Continuous-Flow Microreactor. Micromachines, 2018, 9, 600.	2.9	18
13	Extended classification of the buoyancy-driven flows induced by a neutralization reaction in miscible fluids. Part 2. Theoretical study. Journal of Fluid Mechanics, 2021, 916, .	3.4	17
14	Phase transitions on partially contaminated surface under the influence of thermocapillary flow. Journal of Fluid Mechanics, 2019, 877, 495-533.	3.4	16
15	On Rayleigh-Bénard Mechanism of Alignment of Salt Fingers in Reactive Immiscible Two-Layer Systems. Microgravity Science and Technology, 2014, 26, 293-303.	1.4	14
16	Control of chemoconvective Structures in a slab reactor. Technical Physics, 2008, 53, 146-153.	0.7	12
17	On the extent of surface stagnation produced jointly by insoluble surfactant and thermocapillary flow. Advances in Colloid and Interface Science, 2018, 255, 10-17.	14.7	11
18	Controlling mass transfer in a continuous-flow microreactor with a variable wall relief. International Communications in Heat and Mass Transfer, 2020, 113, 104522.	5.6	10

DMITRY BRATSUN

#	Article	IF	CITATIONS
19	<title>Non-Markovian processes in gene regulation (Keynote Address)</title> . , 2005, , .		9
20	Effect of Unsteady Forces on the Stability of Non-Isothermal Particulate Flow under Finite-Frequency Vibrations. Microgravity Science and Technology, 2009, 21, 153-158.	1.4	9
21	Modelling spatio-temporal dynamics of circadian rythms in Neurospora crassa. Computer Research and Modeling, 2011, 3, 191-213.	0.3	9
22	The effect of concentration-dependent diffusion on double-diffusive instability. Physics of Fluids, 2022, 34, .	4.0	9
23	Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation. Microgravity Science and Technology, 2018, 30, 43-52.	1.4	8
24	Biomechanical modeling of invasive breast carcinoma under a dynamic change in cell phenotype: collective migration of large groups of cells. Biomechanics and Modeling in Mechanobiology, 2020, 19, 723-743.	2.8	8
25	Influence of gravitational precipitation of solid particles on thermal buoyancy convection. Advances in Space Research, 1998, 22, 1267-1270.	2.6	7
26	On the stability of the pulsed convective flow with small heavy particles. EPJ Applied Physics, 2000, 10, 219-230.	0.7	7
27	Convective instability in a two-layer system of reacting fluids with concentration-dependent diffusion. Journal of Applied Mechanics and Technical Physics, 2016, 57, 1226-1238.	0.5	7
28	Delay-induced oscillations in a thermal convection loop under negative feedback control with noise. Communications in Nonlinear Science and Numerical Simulation, 2017, 47, 109-126.	3.3	5
29	Spatial analog of the two-frequency torus breakup in a nonlinear system of reactive miscible fluids. Physical Review E, 2019, 100, 031104.	2.1	5
30	Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part I. Regulation of gene expression. Computer Research and Modeling, 2011, 3, 421-438.	0.3	5
31	Spatial Effects of Delay-Induced Stochastic Oscillations in a Multi-scale Cellular System. Springer Proceedings in Complexity, 2016, , 93-103.	0.3	4
32	Mixing control in a continuous-flow microreactor using electro-osmotic flow. Mathematical Modelling of Natural Phenomena, 2021, 16, 49.	2.4	4
33	Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism. Computer Research and Modeling, 2013, 5, 255-270.	0.3	4
34	Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue. Computer Research and Modeling, 2014, 6, 585-604.	0.3	4
35	Title is missing!. Journal of Applied Mechanics and Technical Physics, 2001, 42, 42-48.	0.5	3
36	Chemo-mechanical modeling of tumor growth in elastic epithelial tissue. AIP Conference Proceedings, 2016, , .	0.4	3

DMITRY BRATSUN

#	Article	IF	CITATIONS
37	Internal density waves of shock type induced by chemoconvection in miscible reacting liquids. Technical Physics Letters, 2017, 43, 944-947.	0.7	3
38	Switching Modes of Mixing Due to an Adjustable Gap in a Continuous-Flow Microreactor. Actuators, 2020, 9, 2.	2.3	3
39	Chemo-elastic modeling of invasive carcinoma development accompanied by oncogenic epithelial-mesenchymal transition. AIP Conference Proceedings, 2017, , .	0.4	2
40	Closed-Form Non-Stationary Solutionsfor Thermo and Chemovibrational Viscous Flows. Fluids, 2019, 4, 175.	1.7	2
41	Synchronization of Circadian Rhythms at Scale of Gene, Cell and Whole Organism. Emergence, Complexity and Computation, 2014, , 345-355.	0.3	2
42	Repressilator with time-delayed gene expression. Part I. Deterministic description. Computer Research and Modeling, 2018, 10, 241-259.	0.3	2
43	Convective instability in two-layer system of reacting fluids with concentration-dependent diffusion. Computational Continuum Mechanics, 2015, 8, 345-358.	0.5	2
44	Pattern Formation in Miscible Rotating Hele-Shaw Flows Induced by a Neutralization Reaction. Microgravity Science and Technology, 2021, 33, 1.	1.4	2
45	Protein pattern formation induced by the joint effect of noise and delay in a multi-cellular system. Mathematical Modelling of Natural Phenomena, 2022, 17, 16.	2.4	2
46	Thermogravitational mechanism of alignment of the front of chemoconvection patterns with an exothermic chemical reaction. Journal of Applied Mechanics and Technical Physics, 2014, 55, 199-208.	0.5	1
47	Effect of Convection on Formation of Adsorbed Surfactant Film under Dynamic Change of Solution Surface Area. Journal of Applied Mechanics and Technical Physics, 2017, 58, 1260-1272.	0.5	1
48	Computational Modeling of Collective Behavior of Panicked Crowd Escaping Multi-floor Branched Building. Springer Proceedings in Complexity, 2013, , 659-663.	0.3	1
49	Modeling of Tumour Growth Induced by Circadian Rhythm Disruption in Epithelial Tissue. Emergence, Complexity and Computation, 2015, , 295-306.	0.3	1
50	Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells. Computer Research and Modeling, 2018, 10, 879-902.	0.3	1
51	Modeling of behavior of panicked crowd in multi-floor branched space. Computer Research and Modeling, 2013, 5, 491-508.	0.3	1
52	Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity. Mathematical Modelling of Natural Phenomena, 2022, 17, 15.	2.4	1
53	Convective instability in multicomponent mixtures with Soret effect. Computational Continuum Mechanics, 2022, 15, 67-82.	0.5	1
54	Centrifugal convection in a two-layer system of reacting miscible fluids. Journal of Physics: Conference Series, 2021, 1809, 012017.	0.4	0

DMITRY BRATSUN

#	Article	IF	CITATIONS
55	Determination of the stability boundary of a two-layer system of miscible liquids with linear diffusion laws. Journal of Physics: Conference Series, 2021, 1809, 012018.	0.4	0
56	On mechanisms of mixing by forced and natural convection in microfluidic devices. Journal of Physics: Conference Series, 2021, 1809, 012001.	0.4	0
57	Stochastic Modeling of Protein Field with a Delayed Feedback. Journal of Physics: Conference Series, 2021, 1945, 012046.	0.4	Ο
58	Repressilator with time-delayed gene expression. Part II. Stochastic description. Computer Research and Modeling, 2021, 13, 587-609.	0.3	0
59	Mathematical Modeling of Invasive Carcinoma: Biomechanics of Small Groups of Cancer Cells. Journal of Physics: Conference Series, 2021, 1945, 012025.	0.4	Ο
60	10.1007/s11454-008-2002-5. , 2010, 53, 146.		0
61	Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium. Computer Research and Modeling, 2012, 4, 369-389.	0.3	0
62	Modeling of Spatially Extended Delay-Induced Circadian Oscillations Synchronized by Cell-to-Cell Communications. Springer Proceedings in Complexity, 2013, , 445-452.	0.3	0
63	Effect of channel geometry on a density wave induced by gravity and chemoconvection in miscible reacting fluids. AIP Advances, 2020, 10, 125222.	1.3	0
64	Modeling the spatial scenario of the transition to chaos via torus breakup in the problem with concentration-dependent diffusion. Computer Research and Modeling, 2020, 12, 9-31.	0.3	0
65	Chemoconvective Structures in a Rotating System of Reacting Liquids. Journal of Applied Mechanics and Technical Physics, 2021, 62, 1132-1144.	0.5	Ο