Vaclav Vetvicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940837/publications.pdf

Version: 2024-02-01

		172457	155660
137	4,039	29	55
papers	citations	h-index	g-index
138	138	138	4903
all docs	docs citations	times ranked	citing authors
an does	does citations	tilles ranked	citing authors

#	Article	IF	Citations
1	The Search for Biomarkers in Endometriosis: a Long and Windy Road. Reproductive Sciences, 2022, 29, 1667-1673.	2.5	13
2	Delayed ejaculation in men with depressive disorders. Andrologia, 2022, , e14412.	2.1	1
3	Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease. Expert Review of Gastroenterology and Hepatology, 2021, 15, 783-796.	3.0	12
4	Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 Tf 50 622 To
5	Review: β-glucans as Effective Antibiotic Alternatives in Poultry. Molecules, 2021, 26, 3560.	3.8	19
6	Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: a narrative review. Annals of Translational Medicine, 2021, 9, 1186-1186.	1.7	28
7	Trained Immunity as an Adaptive Branch of Innate Immunity. International Journal of Molecular Sciences, 2021, 22, 10684.	4.1	8
8	Sulfonated and Carboxymethylated \hat{l}^2 -Glucan Derivatives with Inhibitory Activity against Herpes and Dengue Viruses. International Journal of Molecular Sciences, 2021, 22, 11013.	4.1	10
9	Endometriosis and gynaecological cancers: molecular insights behind a complex machinery. Przeglad Menopauzalny, 2021, 20, 201-206.	1.3	7
10	βâ€glucan as a new tool in vaccine development. Scandinavian Journal of Immunology, 2020, 91, e12833.	2.7	54
11	Endometriosis and risk of ovarian cancer: what do we know?. Archives of Gynecology and Obstetrics, 2020, 301, 1-10.	1.7	71
12	Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules, 2020, 25, 5378.	3.8	58
13	Lysosomotropic Features and Autophagy Modulators among Medical Drugs: Evaluation of Their Role in Pathologies. Molecules, 2020, 25, 5052.	3.8	7
14	Anti-infectious and Anti-tumor Activities of \hat{l}^2 -glucans. Anticancer Research, 2020, 40, 3139-3145.	1.1	35
15	Concentration of NK cells after \hat{l}^2 -glucan and vitamin D supplementation in patients with diabetic retinopathy. Folia Microbiologica, 2020, 65, 755-761.	2.3	4
16	Hypolipidemic Effects of \hat{I}^2 -Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application. Molecules, 2020, 25, 1819.	3.8	29
17	\hat{l}^2 -Glucan Improves Conditions of Chronic Fatigue in Mice by Stimulation of Immunity. The Open Biochemistry Journal, 2020, 14, 1-8.	0.5	1
18	Endometrial cancer—is our knowledge changing?. Translational Cancer Research, 2020, 9, 7734-7745.	1.0	2

#	Article	IF	Citations
19	Effects of \hat{l}^2 -glucan and Vitamin D Supplementation on Inflammatory Parameters in Patients with Diabetic Retinopathy. Journal of Dietary Supplements, 2019, 16, 369-378.	2.6	10
20	Glucan and Its Role in Immunonutrition. , 2019, , 453-460.		1
21	Glucans as New Anticancer Agents. Anticancer Research, 2019, 39, 3373-3378.	1.1	21
22	Glucan and Mannanâ€"Two Peas in a Pod. International Journal of Molecular Sciences, 2019, 20, 3189.	4.1	29
23	Encapsulated Microparticles of $(1\hat{a}^{\dagger}\hat{a})$ - \hat{l}^2 -d-Glucan Containing Extract of Baccharis dracunculifolia: Production and Characterization. Molecules, 2019, 24, 2099.	3.8	9
24	Fungal Exocellular (1-6)-Î ² -d-glucan: Carboxymethylation, Characterization, and Antioxidant Activity. International Journal of Molecular Sciences, 2019, 20, 2337.	4.1	17
25	Synthesis and Evaluation of Oligomeric Thioether-Linked Carbacyclic \hat{l}^2 -($1\hat{a}^3$)-Glucan Mimetics. Journal of Organic Chemistry, 2019, 84, 5554-5563.	3.2	11
26	Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules, 2019, 24, 1251.	3.8	106
27	Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. Journal of Functional Foods, 2019, 54, 81-91.	3.4	43
28	\hat{l}^2 -Glucan successfully stimulated the immune system in different jawed vertebrate species. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 62, 1-6.	1.6	21
29	Immunomodulating Effects Exerted by Glucans Extracted from the King Oyster Culinary-Medicinal Mushroom Pleurotus eryngii (Agaricomycetes) Grown in Substrates Containing Various Concentrations of Olive Mill Waste. International Journal of Medicinal Mushrooms, 2019, 21, 765-781.	1.5	6
30	Immunity in cancer and atherosclerosis. Annals of Translational Medicine, 2019, 7, 204-204.	1.7	11
31	î²-glucans and cholesterol (Review). International Journal of Molecular Medicine, 2018, 41, 1799-1808.	4.0	73
32	Synthesis and Evaluation of 1,5-Dithia- $<$ scp>d $<$ /scp>-laminaribiose, Triose, and Tetraose as Truncated $\hat{1}^2$ -($1\hat{a}^*$ 3)-Glucan Mimetics. Journal of Organic Chemistry, 2018, 83, 14894-14904.	3.2	15
33	Spatial Distribution of Glucan Type and Content between Caps and Stalks in Pleurotus eryngii: Impact on the Anti-inflammatory Functionality. International Journal of Molecular Sciences, 2018, 19, 3371.	4.1	7
34	Biological Markers of Oxidative Stress in Cardiovascular Diseases: After so Many Studies, What do We Know?. Immunological Investigations, 2018, 47, 823-843.	2.0	20
35	Altered Immunity in Endometriosis: What Came First?. Immunological Investigations, 2018, 47, 569-582.	2.0	33
36	Combination Therapy with Glucan and Coenzyme Q10in Murine Experimental Autoimmune Disease and Cancer. Anticancer Research, 2018, 38, 3291-3297.	1.1	18

#	Article	IF	CITATIONS
37	Atherosclerosis as autoimmune disease. Annals of Translational Medicine, 2018, 6, 116-116.	1.7	52
38	Effects of Glucan and Vitamin D Supplementation on Obesity and Lipid Metabolism in Diabetic Retinopathy. The Open Biochemistry Journal, 2018, 12, 36-45.	0.5	12
39	Glucans and Cancer: Comparison of Commercially Available β-glucans – Part IV. Anticancer Research, 2018, 38, 1327-1333.	1.1	29
40	Lentinan Properties in Anticancer Therapy: A Review on the Last 12-Year Literature. American Journal of Immunology, 2017, 13, 50-61.	0.1	15
41	β-Glucan – Is the Current Research Relevant?. International Clinical Pathology Journal, 2017, 4, .	0.1	1
42	Fucoidans Stimulate Immune Reaction and Suppress Cancer Growth. Anticancer Research, 2017, 37, 6041-6046.	1.1	19
43	Effects of curcumin on Helicobacter pylori infection. Annals of Translational Medicine, 2016, 4, 479-479.	1.7	28
44	Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Archives of Gynecology and Obstetrics, 2016, 294, 897-904.	1.7	127
45	Essential Oils from Thyme (<i>Thymus vulgaris</i>): Chemical Composition and Biological Effects in Mouse Model. Journal of Medicinal Food, 2016, 19, 1180-1187.	1.5	13
46	Comparison of Immunological Effects of Commercially Available \hat{l}^2 -Glucans: Part III. International Clinical Pathology Journal, 2016, 2, .	0.1	8
47	Reconstruction of NK Cells During Complex Cancer Treatment. Zhong Liu Za Zhi, 2016, 4, 398-402.	0.3	5
48	Addition of selenium improves immunomodulative effects of glucan. North American Journal of Medical Sciences, 2016, 8, 88.	1.7	11
49	Comparison of Immunological Properties of Various Bioactive Combinations - Part II. International Clinical Pathology Journal, 2016, 2, .	0.1	0
50	Molecular Interactions of β-(1â†'3)-Glucans with Their Receptors. Molecules, 2015, 20, 9745-9766.	3.8	123
51	Humic Acid and Glucan: Protection Against Liver Injury Induced by Carbon Tetrachloride. Journal of Medicinal Food, 2015, 18, 572-577.	1.5	14
52	Evolutionary paradox of immunity. North American Journal of Medical Sciences, 2015, 7, 30.	1.7	0
53	Yeast-Derived ? -Glucan Reduces Intestinal Injury in Rat Model of Necrotizing Enterocolitis. International Clinical Pathology Journal, 2015, 1, .	0.1	4
54	Glucan supplementation enhances the immune response against an influenza challenge in mice. Annals of Translational Medicine, 2015, 3, 22.	1.7	28

#	Article	IF	CITATIONS
55	\hat{l}^2 -glucan affects mucosal immunity in children with chronic respiratory problems under physical stress: clinical trials. Annals of Translational Medicine, 2015, 3, 52.	1.7	19
56	Immunological aspects of endometriosis: a review. Annals of Translational Medicine, 2015, 3, 153.	1.7	46
57	Prophylactic effects of humic acid and #8211; glucan combination against experimental liver injury. Journal of Intercultural Ethnopharmacology, 2015, 4, 249.	0.9	7
58	Glucan Supplementation Has Strong Anti-melanoma Effects: Role of NK Cells. Anticancer Research, 2015, 35, 5287-92.	1.1	10
59	Effects of the Czech Propolis on Sperm Mitochondrial Function. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	1.2	13
60	Anti-Stress Action of an Orally-Given Combination of Resveratrol, \hat{l}^2 -Glucan, and Vitamin C. Molecules, 2014, 19, 13724-13734.	3.8	11
61	The Effects of Î ² -Glucan on Pig Growth and Immunity. The Open Biochemistry Journal, 2014, 1, 89-93.	0.5	41
62	Endometriosis and Cancer. Women's Health, 2014, 10, 591-597.	1.5	24
63	Oligo-Î ² -(1 → 3)-glucans: Impact of Thio-Bridges on Immunostimulating Activities and the Development of Cancer Stem Cells. Journal of Medicinal Chemistry, 2014, 57, 8280-8292.	6.4	22
64	Synthesis and Evaluation of Di- and Trimeric Hydroxylamine-Based \hat{l}^2 -($1\hat{a}\dagger^3$)-Glucan Mimetics. Journal of the American Chemical Society, 2014, 136, 14852-14857.	13.7	30
65	$\hat{l}^2(1\text{-}3)(1\text{-}6)\text{-}D\text{-}glucans modulate immune status in pigs: potential importance for efficiency of commercial farming. Annals of Translational Medicine, 2014, 2, 16.$	1.7	20
66	Immune-enhancing effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) extracts. Annals of Translational Medicine, 2014, 2, 14.	1.7	23
67	Clinical trials of yeast-derived \hat{l}^2 -(1,3) glucan in children: effects on innate immunity. Annals of Translational Medicine, 2014, 2, 15.	1.7	26
68	Endometriosis and ovarian cancer. World Journal of Clinical Oncology, 2014, 5, 800.	2.3	23
69	Effects of \hat{l}^2 -glucan on some environmental toxins: An overview. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2014, 158, 001-004.	0.6	4
70	Comparison of immunological effects of commercially available \hat{l}^2 -glucans. Applied Scientific Reports, 2014, 1, 2.	1.0	7
71	$\hat{l}^2(1\text{-}3)(1\text{-}6)\text{-D-glucans}$ Modulate Immune Status and Blood Glucose Levels in Dogs. British Journal of Pharmaceutical Research, 2014, 4, 981-991.	0.4	19
72	\hat{l}^2 -(1â†'3)-Glucan-mannitol conjugates: scope and amazing results. Annals of Translational Medicine, 2014, 2, 12.	1.7	2

#	Article	IF	CITATIONS
73	Effects of glucan on bone marrow. Annals of Translational Medicine, 2014, 2, 18.	1.7	O
74	Glucan-many faces of one molecule. Annals of Translational Medicine, 2014, 2, 11.	1.7	7
75	Natural immunomodulators and their stimulation of immune reaction: true or false?. Anticancer Research, 2014, 34, 2275-82.	1.1	14
76	Evaluation of a special combination of glucan with organic selenium derivative in different murine tumor models. Anticancer Research, 2014, 34, 6939-44.	1.1	6
77	Reversal of perfluorooctanesulfonate-induced immunotoxicity by a glucan-resveratrol-vitamin C combination. Oriental Pharmacy and Experimental Medicine, 2013, 13, 77-84.	1.2	21
78	Cathepsin D., 2013, , 54-63.		5
79	The Relative Abundance of Oxygen Alkyl-Related Groups in Aliphatic Domains Is Involved in the Main Pharmacological-Pleiotropic Effects of Humic Acids. Journal of Medicinal Food, 2013, 16, 625-632.	1.5	14
80	The effects of \hat{l}^2 - glucan on fish immunity. North American Journal of Medical Sciences, 2013, 5, 580.	1.7	92
81	Syntetic Oligosacharides – Clinical Application in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 720-724.	1.7	5
82	Placebo-driven clinical trials of yeast-derived \hat{l}^2 -(1-3) glucan in children with chronic respiratory problems. Annals of Translational Medicine, 2013, 1, 26.	1.7	24
83	Cathepsin D: Autoantibody profiling as a diagnostic marker for cancers. World Journal of Clinical Oncology, 2013, 4, 1.	2.3	9
84	Procathepsin D involvement in chemoresistance of cancer cells. North American Journal of Medical Sciences, 2012, 4, 174.	1.7	4
85	Glucan–Resveratrol–Vitamin C Combination Offers Protection against Toxic Agents. Toxins, 2012, 4, 1301-1308.	3.4	15
86	Procathepsin D as a Tumor Marker, Anti-Cancer Drug or Screening Agent. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 172-175.	1.7	18
87	Comparison of immunological properties of various bioactive combinations. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2012, 156, 218-222.	0.6	6
88	Combination of glucan, resveratrol and vitamin C demonstrates strong anti-tumor potential. Anticancer Research, 2012, 32, 81-7.	1.1	24
89	Glucan-immunostimulant, adjuvant, potential drug. World Journal of Clinical Oncology, 2011, 2, 115.	2.3	88
90	Bioactive substances with anti-neoplastic efficacy from marine invertebrates: <i>Porifera</i> and <i>Coelenterata</i> . World Journal of Clinical Oncology, 2011, 2, 355.	2.3	20

#	Article	lF	Citations
91	Bioactive substances with anti-neoplastic efficacy from marine invertebrates: <i>Bryozoa</i> , <i>Mollusca</i> , <i>Echinodermata</i> and <i>Urochordata</i> . World Journal of Clinical Oncology, 2011, 2, 362.	2.3	5
92	New 4-deoxy- $(1\hat{a}^{\dagger}\hat{a})$ - \hat{l}^2 -d-glucan-based oligosaccharides and their immunostimulating potential. Carbohydrate Research, 2011, 346, 2213-2221.	2.3	21
93	$\hat{l}^2(1\text{-}3)\text{-D-glucan}$ affects adipogenesis, wound healing and inflammation. Oriental Pharmacy and Experimental Medicine, 2011, 11, 169-175.	1.2	38
94	Biological Properties of (1 â†' 3)-β- <scp>d</scp> -Glucan-Based Synthetic Oligosaccharides. Journal of Medicinal Food, 2011, 14, 369-376.	1.5	15
95	New insights into procathepsin D in pathological and physiological conditions. North American Journal of Medical Sciences, 2011, 3, 222-226.	1.7	0
96	Immune enhancing effects of WB365, a novel combination of Ashwagandha (Withania somnifera) and Maitake (Grifola frondosa) extracts. North American Journal of Medical Sciences, 2011, 3, 320-324.	1.7	29
97	Biological Actions of \hat{I}^2 -Glucan. , 2011, , 10-18.		4
98	Procathepsin D and cytokines influence the proliferation of lung cancer cells. Anticancer Research, 2011, 31, 47-51.	1,1	9
99	Glucan and Humic Acid: Synergistic Effects on the Immune System. Journal of Medicinal Food, 2010, 13, 863-869.	1.5	26
100	New oligo- \hat{l}^2 -(1,3)-glucan derivatives as immunostimulating agents. Bioorganic and Medicinal Chemistry, 2010, 18, 348-357.	3.0	31
101	Procathepsin D and cancer: From molecular biology to clinical applications. World Journal of Clinical Oncology, 2010, 1, 35.	2.3	8
102	ANTI-STRESS ACTION OF SEVERAL ORALLY-GIVEN β-GLUCANS. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2010, 154, 235-238.	0.6	17
103	Effects of Glucan on Immunosuppressive Actions of Mercury. Journal of Medicinal Food, 2009, 12, 1098-1104.	1.5	15
104	Effects of yeast-derived \hat{l}^2 -glucans on blood cholesterol and macrophage functionality. Journal of Immunotoxicology, 2009, 6, 30-35.	1.7	36
105	î ² -GLUCAN-INDOMETHACIN COMBINATION PRODUCES NO LETHAL EFFECTS. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2009, 153, 111-116.	0.6	3
106	Cathepsin Dâ€"Many functions of one aspartic protease. Critical Reviews in Oncology/Hematology, 2008, 68, 12-28.	4.4	514
107	Immunological Effects of Yeast- and Mushroom-Derived < i> \hat{l}^2 < /i>-Glucans. Journal of Medicinal Food, 2008, 11, 615-622.	1.5	53
108	Enhancing effects of new biological response modifier \hat{l}^2 -1,3 glucan sulfate PS3 on immune reactions. Biomedicine and Pharmacotherapy, 2008, 62, 283-288.	5.6	19

#	Article	IF	Citations
109	2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: comparison with parental cell line MDA-MB-231. Oncology Reports, 2008, 19, 1237-44.	2.6	13
110	Depletion of procathepsin D gene expression by RNA interference $\hat{a}\in$ A potential therapeutic target for breast cancer. Cancer Biology and Therapy, 2007, 6, 1081-1087.	3.4	24
111	Orally administered marine $(1\hat{a}\dagger^3)$ - \hat{l}^2 -d-glucan Phycarine stimulates both humoral and cellular immunity. International Journal of Biological Macromolecules, 2007, 40, 291-298.	7.5	99
112	Procathepsin D expression correlates with invasive and metastatic phenotype of MDA-MB-231 derived cell lines. International Journal of Biological Macromolecules, 2007, 41, 204-209.	7.5	8
113	Secretion of Cytokines in Breast Cancer Cells: The Molecular Mechanism of Procathepsin D Proliferative Effects. Journal of Interferon and Cytokine Research, 2007, 27, 191-200.	1.2	20
114	Procathepsin D secreted by HaCaT keratinocyte cells $\hat{a}\in$ A novel regulator of keratinocyte growth. European Journal of Cell Biology, 2007, 86, 303-313.	3.6	20
115	Glucan and resveratrol complex - possible synergistic effects on immune system. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2007, 151, 41-46.	0.6	30
116	Physiological effects of different types of \hat{l}^2 -glucan. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2007, 151, 225-231.	0.6	60
117	Effect of procathepsin D activation peptide on gene expression of breast cancer cells. Cancer Letters, 2006, 239, 46-54.	7.2	15
118	Role of activation peptide of procathepsin D in proliferation and invasion of lung cancer cells. Anticancer Research, 2006, 26, 4163-70.	1.1	23
119	Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo- \hat{l}^2 -(1,3)-glucans and immunostimulatory effects. Glycobiology, 2005, 15, 393-407.	2.5	76
120	Effects of marine $\hat{l}^2\hat{a}^{"}$ 1,3 glucan on immune reactions. International Immunopharmacology, 2004, 4, 721-730.	3.8	132
121	Role of enzymatically inactive procathepsin D in lung cancer. Anticancer Research, 2004, 24, 2739-43.	1.1	27
122	Procathepsin D in breast cancer: What do we know? Effects of ribozymes and other inhibitors. Cancer Gene Therapy, 2002, 9, 854-863.	4.6	34
123	Cytokines affect procathepsin D-stimulated proliferation of breast cancer cells. Anticancer Research, 2002, 22, 913-9.	1.1	1
124	Role of procathepsin D activation peptide in prostate cancer growth. Prostate, 2000, 44, 1-7.	2.3	33
125	Therapeutic intervention with complement and \hat{l}^2 -glucan in cancer. Immunopharmacology, 1999, 42, 61-74.	2.0	238
126	Antiâ€human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Research and Treatment, 1999, 57, 261-269.	2.5	50

#	Article	IF	CITATIONS
127	Effect of procathepsin D and its activation peptide on prostate cancer cells. Cancer Letters, 1998, 129, 55-59.	7.2	33
128	Analysis of the interaction of procathepsin D activation peptide with breast cancer cells. , $1997, 73, 403-409$.		48
129	Jaroslav Rejnek 1929–1993. Developmental and Comparative Immunology, 1994, 18, 1.	2.3	4
130	Effect of human procathepsin D on proliferation of human cell lines. Cancer Letters, 1994, 79, 131-135.	7.2	55
131	Human endothelial cell line from an angiosarcoma. In Vitro Cellular & Developmental Biology, 1993, 29, 199-202.	1.0	19
132	Omental dendritic cells: la expression and relation to macrophages. Apmis, 1990, 98, 1113-1122.	2.0	4
133	In vitro antigen-binding properties of coelomocytes of Eisenia foetida (Annelida). Immunology Letters, 1990, 26, 183-187.	2.5	22
134	Phagocytic Activity of Peritoneal and Omental Macrophages of Athymic Nude Mice. Immunological Investigations, 1988, 17, 531-541.	2.0	5
135	Polymer microbeads in immunology. Biomaterials, 1987, 8, 341-345.	11.4	27
136	Co-expression of different types of Fc receptors on murine peritoneal macrophages. European Journal of Immunology, 1986, 16, 901-905.	2.9	8
137	2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: Comparison with parental cell line MDA-MB-231. Oncology Reports, 0, , .	2.6	9