Sankar Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NF-κB AND REL PROTEINS: Evolutionarily Conserved Mediators of Immune Responses. Annual Review of Immunology, 1998, 16, 225-260.	21.8	4,878
2	Shared Principles in NF-κB Signaling. Cell, 2008, 132, 344-362.	28.9	4,027
3	Signaling to NF-κB. Genes and Development, 2004, 18, 2195-2224.	5.9	3,444
4	Missing Pieces in the NF-κB Puzzle. Cell, 2002, 109, S81-S96.	28.9	3,354
5	The NF-ÂB Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000034-a000034.	5.5	2,090
6	Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature, 1995, 376, 167-170.	27.8	1,766
7	NF-κB, Inflammation, and Metabolic Disease. Cell Metabolism, 2011, 13, 11-22.	16.2	1,564
8	Crosstalk in NF-κB signaling pathways. Nature Immunology, 2011, 12, 695-708.	14.5	1,499
9	NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes and Development, 2012, 26, 203-234.	5.9	1,404
10	TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, 472, 476-480.	27.8	1,303
11	Activation in vitro of NF-κB" by phosphorylation of its inhibitor IκB". Nature, 1990, 344, 678-682.	27.8	1,280
12	New regulators of NF- $\hat{I}^{2}B$ in inflammation. Nature Reviews Immunology, 2008, 8, 837-848.	22.7	1,163
13	Phosphorylation of NF-κB p65 by PKA Stimulates Transcriptional Activity by Promoting a Novel Bivalent Interaction with the Coactivator CBP/p300. Molecular Cell, 1998, 1, 661-671.	9.7	1,116
14	Mitochondria in innate immune responses. Nature Reviews Immunology, 2011, 11, 389-402.	22.7	1,062
15	Signal transduction through NF-κB. Trends in Immunology, 1998, 19, 80-88.	7.5	1,045
16	Cloning of the p50 DNA binding subunit of NF-Î $^{\circ}$ B: Homology to rel and dorsal. Cell, 1990, 62, 1019-1029.	28.9	929
17	A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria. Science, 2004, 303, 1522-1526.	12.6	909
18	The Phosphorylation Status of Nuclear NF-ΚB Determines Its Association with CBP/p300 or HDAC-1. Molecular Cell, 2002, 9, 625-636.	9.7	896

#	Article	IF	CITATIONS
19	TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein. Science, 2005, 308, 1626-1629.	12.6	862
20	NF-κB in immunobiology. Cell Research, 2011, 21, 223-244.	12.0	802
21	The Transcriptional Activity of NF-κB Is Regulated by the lκB-Associated PKAc Subunit through a Cyclic AMP–Independent Mechanism. Cell, 1997, 89, 413-424.	28.9	798
22	llºB-l² regulates the persistent response in a biphasic activation of NF-lºB. Cell, 1995, 80, 573-582.	28.9	758
23	Regulation of NF-κB by TNF family cytokines. Seminars in Immunology, 2014, 26, 253-266.	5.6	755
24	Selective Inhibition of NF-kappa B Activation by a Peptide That Blocks the Interaction of NEMO with the Ikappa B Kinase Complex. Science, 2000, 289, 1550-1554.	12.6	664
25	DNA binding and lκB inhibition of the cloned p65 subunit of NF-κB, a rel-related polypeptide. Cell, 1991, 64, 961-969.	28.9	644
26	Toll-like receptor–mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. Journal of Clinical Investigation, 2001, 107, 13-19.	8.2	633
27	TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes and Development, 2005, 19, 2668-2681.	5.9	632
28	Recognition and Signaling by Toll-Like Receptors. Annual Review of Cell and Developmental Biology, 2006, 22, 409-437.	9.4	612
29	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	16.2	572
30	Structure of NF-κB p50 homodimer bound to a κB site. Nature, 1995, 373, 303-310.	27.8	571
31	Negative Regulation of Toll-like Receptor-mediated Signaling by Tollip. Journal of Biological Chemistry, 2002, 277, 7059-7065.	3.4	521
32	Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nature Medicine, 2004, 10, 617-624.	30.7	465
33	NF-ÂB activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10137-10142.	7.1	426
34	NF-κB and Rel Proteins in Innate Immunity. Advances in Immunology, 1995, 58, 1-27.	2.2	395
35	Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. Journal of Clinical Investigation, 2007, 117, 889-901.	8.2	382
36	Nuclear Factor-κB Modulates Regulatory T Cell Development by Directly Regulating Expression of Foxp3 Transcription Factor. Immunity, 2009, 31, 921-931.	14.3	348

#	Article	IF	CITATIONS
37	Rel/NF-κB and IκB proteins: an overview. Seminars in Cancer Biology, 1997, 8, 63-73.	9.6	335
38	The MAGUK Family Protein CARD11 Is Essential for Lymphocyte Activation. Immunity, 2003, 18, 763-775.	14.3	317
39	<scp>NF</scp> â€ÎºB: roles and regulation in different <scp>CD</scp> 4 ⁺ Tâ€cell subsets. Immunological Reviews, 2013, 252, 41-51.	6.0	313
40	Molecular mechanisms of innate memory and tolerance to LPS. Journal of Leukocyte Biology, 2017, 101, 107-119.	3.3	293
41	Antigen-Receptor Signaling to Nuclear Factor κB. Immunity, 2006, 25, 701-715.	14.3	290
42	Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity, 2013, 38, 119-130.	14.3	279
43	NF-κB Activation by the Pre-T Cell Receptor Serves as a Selective Survival Signal in T Lymphocyte Development. Immunity, 2000, 13, 677-689.	14.3	263
44	PDK1 Nucleates T Cell Receptor-Induced Signaling Complex for NF-ÂB Activation. Science, 2005, 308, 114-118.	12.6	230
45	NF-κB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer. Cell, 2017, 170, 1096-1108.e13.	28.9	222
46	A novel DNA recognition mode by the NF- $\hat{I}^{ m P}$ B p65 homodimer. Nature Structural Biology, 1998, 5, 67-73.	9.7	218
47	A long noncoding RNA associated with susceptibility to celiac disease. Science, 2016, 352, 91-95.	12.6	211
48	Regulation of the NF-κB-Mediated Transcription of Inflammatory Genes. Frontiers in Immunology, 2014, 5, 71.	4.8	193
49	A Mouse Model of Salmonella Typhi Infection. Cell, 2012, 151, 590-602.	28.9	189
50	Celebrating 25 years of NFâ€₽̂B research. Immunological Reviews, 2012, 246, 5-13.	6.0	179
51	ll̂ºBl̂² acts to inhibit and activate gene expression during the inflammatory response. Nature, 2010, 466, 1115-1119.	27.8	175
52	An NF-κB Transcription-Factor-Dependent Lineage-Specific Transcriptional Program Promotes Regulatory T Cell Identity and Function. Immunity, 2017, 47, 450-465.e5.	14.3	161
53	Role of the Guanosine Triphosphatase Rac2 in T Helper 1 Cell Differentiation. Science, 2000, 288, 2219-2222.	12.6	151
54	T Regulatory Cells Maintain Intestinal Homeostasis by Suppressing γδT Cells. Immunity, 2010, 33, 791-803.	14.3	148

#	Article	IF	CITATIONS
55	Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature, 2018, 559, 114-119.	27.8	145
56	Characterization of the lκB-kinase NEMO Binding Domain. Journal of Biological Chemistry, 2002, 277, 45992-46000.	3.4	137
57	Role of nuclear factor-kappaB in the immune system and bone. Immunological Reviews, 2005, 208, 80-87.	6.0	136
58	NF-κB, an Evolutionarily Conserved Mediator of Immune and Inflammatory Responses. , 2005, 560, 41-45.		132
59	RelB Forms Transcriptionally Inactive Complexes with RelA/p65. Journal of Biological Chemistry, 2003, 278, 19852-19860.	3.4	130
60	Regulation of inducible gene expression by the transcription factor NF-κB. Immunologic Research, 1999, 19, 183-190.	2.9	128
61	SIGNAL TRANSDUCTION: IkB Kinases: Kinsmen with Different Crafts. Science, 1999, 284, 271-273.	12.6	127
62	Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes and Development, 2008, 22, 1159-1173.	5.9	124
63	The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF- \hat{I}^{0} B and activate T cells. Nature Immunology, 2009, 10, 158-166.	14.5	119
64	The deubiquitinase activity of <scp>A</scp> 20 is dispensable for <scp>NF</scp> â€Ք <scp>B</scp> signaling. EMBO Reports, 2014, 15, 775-783.	4.5	118
65	X-ray Crystal Structure of an lκBβ·NF-κB p65 Homodimer Complex. Journal of Biological Chemistry, 2003, 278, 23094-23100.	3.4	107
66	A Subclass of Ras Proteins That Regulate the Degradation of IB. Science, 2000, 287, 869-873.	12.6	102
67	A Sustained Reduction in lκB-β May Contribute to Persistent NF-κB Activation in Human Endothelial Cells. Journal of Biological Chemistry, 1996, 271, 16317-16322.	3.4	100
68	Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes and Development, 2003, 17, 2933-2949.	5.9	87
69	Tumor Necrosis Factor-α Induces Nuclear Factor-κB-dependent TRPC1 Expression in Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 37195-37203.	3.4	87
70	Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease. Genes and Development, 2010, 24, 1709-1717.	5.9	87
71	Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-?B activation. Arthritis and Rheumatism, 2005, 52, 951-958.	6.7	83
72	The Alternative NF-ήB Pathway in Regulatory T Cell Homeostasis and Suppressive Function. Journal of Immunology, 2018, 200, 2362-2371.	0.8	74

#	Article	IF	CITATIONS
73	An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages. Cell Reports, 2018, 22, 2654-2666.	6.4	74
74	Disease-Associated SNPs in Inflammation-Related IncRNAs. Frontiers in Immunology, 2019, 10, 420.	4.8	74
75	Phosphorylation of Serine 68 in the lκB Kinase (IKK)-binding Domain of NEMO Interferes with the Structure of the IKK Complex and Tumor Necrosis Factor-α-induced NF-κB Activity. Journal of Biological Chemistry, 2008, 283, 76-86.	3.4	68
76	SnapShot: NF-κB Signaling Pathways. Cell, 2006, 127, 1286.e1-1286.e2.	28.9	67
77	Selective inhibition of NF-?B in dendritic cells by the NEMO-binding domain peptide blocks maturation and polarization. European Journal of Immunology, 2005, 35, 1164-1174.	2.9	63
78	c-Rel is a myeloid checkpoint for cancer immunotherapy. Nature Cancer, 2020, 1, 507-517.	13.2	63
79	β-TrCP Mediates the Signal-induced Ubiquitination of lκBβ. Journal of Biological Chemistry, 1999, 274, 29591-29594.	3.4	57
80	CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts. Journal of Experimental Medicine, 2015, 212, 1283-1301.	8.5	56
81	Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11. Journal of Molecular Biology, 2010, 403, 616-629.	4.2	54
82	A Novel Ubiquitin-like Domain in IκB Kinase β Is Required for Functional Activity of the Kinase. Journal of Biological Chemistry, 2004, 279, 45528-45539.	3.4	52
83	Differential Role of the Transcription Factor NF-ήB in Selection and Survival of CD4+ and CD8+ Thymocytes. Immunity, 2008, 29, 523-537.	14.3	52
84	Toll-Like Receptor 11 (TLR11) Interacts with Flagellin and Profilin through Disparate Mechanisms. PLoS ONE, 2016, 11, e0148987.	2.5	52
85	The T1D-associated lncRNA <i>Lnc13</i> modulates human pancreatic β cell inflammation by allele-specific stabilization of <i>STAT1</i> mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9022-9031.	7.1	43
86	'PPAR'ting ways with inflammation. Nature Immunology, 2005, 6, 966-967.	14.5	42
87	Dimerization of the lκB Kinase-Binding Domain of NEMO Is Required for Tumor Necrosis Factor Alpha-Induced NF-κB Activity. Molecular and Cellular Biology, 2006, 26, 9209-9219.	2.3	41
88	Intranasal Delivery of NEMO-Binding Domain Peptide Prevents Memory Loss inÂaÂMouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 385-402.	2.6	41
89	Cutting Edge: NF-κB p65 and c-Rel Control Epidermal Development and Immune Homeostasis in the Skin. Journal of Immunology, 2015, 194, 2472-2476.	0.8	41
90	Differential Phosphorylation of the Signal-responsive Domain of lκBα and lκBβ by lκB Kinases. Journal of Biological Chemistry, 2003, 278, 31980-31987.	3.4	39

Sankar Ghosh

#	Article	IF	CITATIONS
91	Inhibition of NF-Î ^o B Activation Reduces the Tissue Effects of Transgenic IL-13. Journal of Immunology, 2007, 179, 7030-7041.	0.8	39
92	Regulation of lκBβ Expression in Testis. Molecular Biology of the Cell, 2002, 13, 4179-4194.	2.1	37
93	Regulating Inducible Transcription Through Controlled Localization. Science Signaling, 2005, 2005, re6.	3.6	37
94	Cutaneous p38 mitogen-activated protein kinase activation triggers psoriatic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 144, 1036-1049.	2.9	37
95	Activation of NF-κB promotes the transition of large, CD43+ pre-B cells to small, CD43â^' pre-B cells. International Immunology, 2005, 17, 815-825.	4.0	36
96	κB-Ras Proteins Regulate Both NF-κB-Dependent Inflammation and Ral-Dependent Proliferation. Cell Reports, 2014, 8, 1793-1807.	6.4	36
97	Testing NF-κB-based Therapy in Hemiparkinsonian Monkeys. Journal of NeuroImmune Pharmacology, 2012, 7, 544-556.	4.1	35
98	Cytoplasmic Form of Carlr IncRNA Facilitates Inflammatory Gene Expression upon NF-κB Activation. Journal of Immunology, 2017, 199, 581-588.	0.8	35
99	PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division. Cell Reports, 2016, 15, 1615-1623.	6.4	34
100	TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. Journal of Experimental Medicine, 2017, 214, 1297-1311.	8.5	33
101	A Novel Link between Inflammation and Cancer. Cancer Cell, 2016, 30, 829-830.	16.8	31
102	Tolerization of Inflammatory Gene Expression. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 69-79.	1.1	29
103	Identification and characterization of a long non-coding RNA up-regulated during HIV-1 infection. Virology, 2017, 511, 30-39.	2.4	27
104	A Role for NF- $^{\rm \widehat{P}B}$ Activity in Skin Hyperplasia and the Development of Keratoacanthomata in Mice. PLoS ONE, 2013, 8, e71887.	2.5	26
105	Metformin selectively dampens the acute inflammatory response through an AMPK-dependent mechanism. Scientific Reports, 2021, 11, 18721.	3.3	25
106	Fas activates NF-l̂ºB and induces apoptosis in T-cell lines by signaling pathways distinct from those induced by TNF-l̂±. Cell Death and Differentiation, 1997, 4, 130-139.	11.2	24
107	Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis. Biochemical and Biophysical Research Communications, 2015, 464, 711-717.	2.1	24
108	κB-Ras and Ral GTPases regulate acinar to ductal metaplasia during pancreatic adenocarcinoma development and pancreatitis. Nature Communications, 2020, 11, 3409.	12.8	24

#	Article	IF	CITATIONS
109	Cell-Intrinsic NF-κB Activation Is Critical for the Development of Natural Regulatory T Cells in Mice. PLoS ONE, 2011, 6, e20003.	2.5	24
110	The Two Faces of NF-κB Signaling in Cancer Development and Therapy. Cancer Cell, 2011, 20, 556-558.	16.8	23
111	Toll-like Receptor 11 (TLR11) Prevents Salmonella Penetration into the Murine Peyer Patches. Journal of Biological Chemistry, 2012, 287, 43417-43423.	3.4	21
112	The Kinase PDK1 Is Essential for B-Cell Receptor Mediated Survival Signaling. PLoS ONE, 2013, 8, e55378.	2.5	20
113	Inhibition of ll̂ºBl̂²/NFl̂ºB signaling prevents LPS-induced IL1l̂² expression without increasing apoptosis in the developing mouse lung. Pediatric Research, 2017, 82, 1064-1072.	2.3	19
114	Transition from Heterotypic to Homotypic PDK1 Homodimerization Is Essential for TCR-Mediated NF-κB Activation. Journal of Immunology, 2013, 190, 4508-4515.	0.8	16
115	NF-κB is dispensable for normal lymphocyte development in bone marrow but required for protection of progenitors from TNFα. International Immunology, 2006, 18, 653-659.	4.0	15
116	Bridging the gap: A regulator of NF-κB linking inflammation and cancer. Journal of Oral Biosciences, 2015, 57, 143-147.	2.2	14
117	Mice Lacking TLR11 Exhibit Variable Salmonella typhi Susceptibility. Cell, 2016, 164, 829-830.	28.9	14
118	Developmentally Regulated Innate Immune NFκB Signaling Mediates IL-1α Expression in the Perinatal Murine Lung. Frontiers in Immunology, 2019, 10, 1555.	4.8	12
119	Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 5 or Toll-Like Receptor 9. PLoS ONE, 2016, 11, e0167693.	2.5	11
120	Toll-like Receptor (TLR)-induced Rasgef1b expression in macrophages is regulated by NF-κB through its proximal promoter. International Journal of Biochemistry and Cell Biology, 2020, 127, 105840.	2.8	11
121	CpCâ€ODNâ€mediated TLR9 innate immune signalling and calcium dyshomeostasis converge on the NFκB inhibitory protein lκBβ to drive IL1α and IL1β expression. Immunology, 2020, 160, 64-77.	4.4	11
122	Conditional PDK1 Ablation Promotes Epidermal and T-Cell-Mediated Dysfunctions Leading to Inflammatory Skin Disease. Journal of Investigative Dermatology, 2015, 135, 2688-2696.	0.7	10
123	Innate sense of purpose for IKKβ. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17348-17349.	7.1	9
124	Intranuclear delivery of the transcription modulation domain of Tbet-improved lupus nephritis in (NZB/NZW) F1 lupus-prone mice. Kidney International, 2018, 93, 1118-1130.	5.2	9
125	Both knock-down and overexpression of Rap2a small GTPase in macrophages result in impairment of NF-κB activity and inflammatory gene expression. Molecular Immunology, 2019, 109, 27-37.	2.2	9

0

#	Article	IF	CITATIONS
127	Cloning and characterization of the gene encoding mouse lîºBβ. Gene, 2000, 247, 279-286.	2.2	8
128	Attenuation ofin vitrohost–pathogen interactions in quinolone-resistantSalmonellaTyphi mutants. Journal of Antimicrobial Chemotherapy, 2016, 71, 111-122.	3.0	7
129	PDK1 Is Required for Maintenance of CD4+ Foxp3+ Regulatory T Cell Function. Journal of Immunology, 2021, 206, 1776-1783.	0.8	7
130	Response to Comment on "PDK1 Nucleates T Cell Receptor-Induced Signaling Complex for NF-ÂB Activation". Science, 2006, 312, 55b-55b.	12.6	5
131	Direct Activation of Protein Kinases by Ubiquitin. Journal of Molecular Cell Biology, 2010, 2, 20-22.	3.3	5
132	A T cell-intrinsic function for NF-κB RelB in experimental autoimmune encephalomyelitis. Scientific Reports, 2021, 11, 19674.	3.3	4
133	Intranuclear Delivery of HIF-1α-TMD Alleviates EAE via Functional Conversion of TH17 Cells. Frontiers in Immunology, 2021, 12, 741938.	4.8	4
134	Clean Up after Yourself. Molecular Cell, 2016, 61, 644-645.	9.7	3
135	Immuno-suppressive function of nucleus-transducible BAF57-ΔPH in T cell activation via degradation of endogenous BAF57. International Journal of Hematology, 2018, 108, 375-383.	1.6	2
136	Data in support of Rap2a GTPase expression, activation and effects in LPS-mediated innate immune response and NF-κB activation. Data in Brief, 2019, 24, 103965.	1.0	2
137	Lower threshold to NFκB activity sensitizes murine β-cells to streptozotocin. Journal of Endocrinology, 2021, 249, 163-175.	2.6	2
138	REGULATION OF NF-KB TRANSCRIPTIONAL ACTIVITY. Shock, 2004, 21, 44.	2.1	1
139	Functional Implications of Intergenic GWAS SNPs in Immune-Related LncRNAs. Advances in Experimental Medicine and Biology, 2022, 1363, 147-160.	1.6	1
140	Charles A. Janeway, Jr. (1943-2003). Immunity, 2003, 18, 591-592.	14.3	0
141	Keeping cartographers busy. Nature Cell Biology, 2004, 6, 87-89.	10.3	0
142	NFB in the Innate Immune System. , 2006, , 107-129.		0
143	The NFB Pathway. , 2006, , 1-7.		0

144 NF-_B in the Adaptive Immune System. , 2006, , 131-157.

9