Jean-Philippe F Ral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11647-11652.	7.1	809
3	Metabolic engineering of biomass for high energy density: oilseedâ€like triacylglycerol yields from plant leaves. Plant Biotechnology Journal, 2014, 12, 231-239.	8.3	256
4	Circadian Clock Regulation of Starch Metabolism Establishes GBSSI as a Major Contributor to Amylopectin Synthesis in Chlamydomonas reinhardtii Â. Plant Physiology, 2006, 142, 305-317.	4.8	133
5	GrainScan: a low cost, fast method for grain size and colour measurements. Plant Methods, 2014, 10, 23.	4.3	132
6	Plastidial phosphorylase is required for normal starch synthesis inChlamydomonas reinhardtii. Plant Journal, 2006, 48, 274-285.	5.7	105
7	Step changes in leaf oil accumulation via iterative metabolic engineering. Metabolic Engineering, 2017, 39, 237-246.	7.0	98
8	Resistant starch in cereals: Exploiting genetic engineering and genetic variation. Journal of Cereal Science, 2007, 46, 251-260.	3.7	82
9	Starch Division and Partitioning. A Mechanism for Granule Propagation and Maintenance in the Picophytoplanktonic Green Alga Ostreococcus tauri. Plant Physiology, 2004, 136, 3333-3340.	4.8	80
10	Genetic enhancement of oil content in potato tuber (<i>Solanum tuberosum</i> L.) through an integrated metabolic engineering strategy. Plant Biotechnology Journal, 2017, 15, 56-67.	8.3	68
11	Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydrate Polymers, 2012, 89, 979-991.	10.2	59
12	Biochemical Characterization of Wild-Type and Mutant Isoamylases of Chlamydomonas reinhardtii Supports a Function of the Multimeric Enzyme Organization in Amylopectin Maturation. Plant Physiology, 2001, 125, 1723-1731.	4.8	54
13	Downâ€regulation of Glucan, Waterâ€Dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnology Journal, 2012, 10, 871-882.	8.3	52
14	Granule-bound starch synthase I. FEBS Journal, 2002, 269, 3810-3820.	0.2	50
15	Pathway of Cytosolic Starch Synthesis in the Model Glaucophyte <i>Cyanophora paradoxa</i> . Eukaryotic Cell, 2008, 7, 247-257.	3.4	49
16	Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. Journal of Experimental Botany, 2014, 65, 5443-5457.	4.8	48
17	STA11, a Chlamydomonas reinhardtii Locus Required for Normal Starch Granule Biogenesis, Encodes Disproportionating Enzyme. Further Evidence for a Function of α-1,4 Glucanotransferases during Starch Granule Biosynthesis in Green Algae. Plant Physiology, 2003, 132, 137-145.	4.8	47
18	Does Late Maturity Alpha-Amylase Impact Wheat Baking Quality?. Frontiers in Plant Science, 2018, 9, 1356.	3.6	41

JEAN-PHILIPPE F RAL

#	Article	IF	CITATIONS
19	Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate <i>Crypthecodinium cohnii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21126-21130.	7.1	40
20	Engineering high αâ€amylase levels in wheat grain lowers <scp>F</scp> alling <scp>N</scp> umber but improves baking properties. Plant Biotechnology Journal, 2016, 14, 364-376.	8.3	40
21	Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay. BMC Plant Biology, 2013, 13, 71.	3.6	34
22	Sponge and dough bread making: genetic and phenotypic relationships with wheat quality traits. Theoretical and Applied Genetics, 2010, 121, 815-828.	3.6	29
23	Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth. Plant Biotechnology Journal, 2016, 14, 398-408.	8.3	29
24	New insight in cereal starch degradation: identification and structural characterization of four α-amylases in bread wheat. Amylase, 2017, 1, .	1.6	29
25	New Perspectives on the Role of $\hat{I}\pm$ - and \hat{I}^2 -Amylases in Transient Starch Synthesis. PLoS ONE, 2014, 9, e100498.	2.5	25
26	Increasing growth and yield by altering carbon metabolism in a transgenic leaf oil crop. Plant Biotechnology Journal, 2020, 18, 2042-2052.	8.3	23
27	Oil Accumulation in Transgenic Potato Tubers Alters Starch Quality and Nutritional Profile. Frontiers in Plant Science, 2017, 8, 554.	3.6	18
28	A biotechnological approach to directly assess the impact of elevated endogenous αâ€amylase on Asian whiteâ€salted noodle quality. Starch/Staerke, 2018, 70, 1700089.	2.1	13
29	Evaluation of the impact of heat on wheat dormancy, late maturity α-amylase and grain size under controlled conditions in diverse germplasm. Scientific Reports, 2020, 10, 17800.	3.3	13
30	How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods, 2022, 11, 1223.	4.3	8
31	Overexpression of a wheat αâ€amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. Plant Journal, 2021, 108, 378-393.	5.7	6
32	A transcriptional journey from sucrose to endosperm oil bodies in triple transgene oily wheat grain. Journal of Cereal Science, 2021, 100, 103268.	3.7	5
33	Beyond amylose content, selecting starch traits impacting in vitro α-amylase degradability in a wheat MAGIC population. Carbohydrate Polymers, 2022, 291, 119652.	10.2	5
34	Transferring a Biomass Enhancement Biotechnology from Glasshouse to Field: A Case Study on Wheat GWD RNAi. Agronomy, 2017, 7, 82.	3.0	2
35	Over-Expression of a Wheat Late Maturity Alpha-Amylase Type 1 Impact on Starch Properties During Grain Development and Germination. Frontiers in Plant Science, 2022, 13, 811728.	3.6	2
36	Down-regulation of glucan, water-dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnology Journal, 2013, 11, 390-391.	8.3	1

#	Article	IF	CITATIONS
37	Fast and Efficient Screening for Wheat Loss-of-Gene Mutants Using Multiplexed Melt Curve Analyses. PLoS ONE, 2016, 11, e0159955.	2.5	0