Guoxing Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Realâ€Time Tunable Nanoprintingâ€Multiplexing with Simultaneous Metaâ€Holography Displays by Stepwise Nanocavities. Advanced Functional Materials, 2022, 32, 2110022.	14.9	42
2	Massâ€Manufactured Beamâ€Steering Metasurfaces for Highâ€Speed Fullâ€Duplex Optical Wirelessâ€Broadcasting Communications. Advanced Materials, 2022, 34, e2106080.	21.0	45
3	Broadband continuous achromatic and super-dispersive metalens in near-infrared band. Journal of Applied Physics, 2022, 131, .	2.5	5
4	Multifunctional Liquid Crystal Device for Grayscale Pattern Display and Holography with Tunable Spectralâ€Response. Laser and Photonics Reviews, 2022, 16, .	8.7	29
5	Bilayerâ€Metasurface Design, Fabrication, and Functionalization for Fullâ€5pace Light Manipulation. Advanced Optical Materials, 2022, 10, .	7.3	28
6	Multifold Integration of Printed and Holographic Metaâ€Image Displays Enabled by Dualâ€Degeneracy. Small, 2022, 18, e2106148.	10.0	22
7	Augmented Reality Enabled by On hip Metaâ€Holography Multiplexing. Laser and Photonics Reviews, 2022, 16, .	8.7	41
8	Compressive Imaging Encryption with Secret Sharing Metasurfaces. Advanced Optical Materials, 2022, 10, .	7.3	29
9	On-axis three-dimensional meta-holography enabled with continuous-amplitude modulation of light. Optics Express, 2021, 29, 6147.	3.4	10
10	Single-celled multifunctional metasurfaces merging structural-color nanoprinting and holography. Optics Express, 2021, 29, 10737.	3.4	20
11	From Lingering to Rift: Metasurface Decoupling for Near―and Farâ€Field Functionalization. Advanced Materials, 2021, 33, e2007507.	21.0	60
12	Light Spin Angular Momentum Spatial Mode Converter Based on Dielectric Metasurface. Journal of Lightwave Technology, 2021, 39, 2438-2442.	4.6	6
13	Metasurface-based key for computational imaging encryption. Science Advances, 2021, 7, .	10.3	153
14	Actively Switchable Beam‧teering via Hydrophilic/Hydrophobic‧elective Design of Waterâ€Immersed Metasurface. Advanced Optical Materials, 2021, 9, 2100297.	7.3	29
15	Asymmetric hologram with a single-size nanostructured metasurface. Optics Express, 2021, 29, 19964.	3.4	17
16	3D Metaâ€Prisms for Versatile Beam Steering by Hybridizing Plasmonic and Diffractive Effect in the Broadband Visible Regime. Small, 2021, 17, e2100561.	10.0	9
17	Stepwise Dualâ€Fabry–Pérot Nanocavity for Grayscale Imaging Encryption/Concealment with Holographic Multiplexing. Advanced Optical Materials, 2021, 9, 2100950.	7.3	23
18	Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics, 2021, 10, 2903-2914.	6.0	31

#	Article	IF	CITATIONS
19	Multiplexing meta-hologram with separate control of amplitude and phase. Optics Express, 2021, 29, 27696.	3.4	16
20	3D Metaâ€Prisms for Versatile Beam Steering by Hybridizing Plasmonic and Diffractive Effect in the Broadband Visible Regime (Small 34/2021). Small, 2021, 17, 2170175.	10.0	0
21	Angularâ€Multiplexing Metasurface: Building Up Independentâ€Encoded Amplitude/Phase Dictionary for Angular Illumination. Advanced Optical Materials, 2021, 9, 2101547.	7.3	32
22	Full-space metasurface holograms in the visible range. Optics Express, 2021, 29, 2920.	3.4	37
23	Structural-color nanoprinting with hidden watermarks. Optics Letters, 2021, 46, 480.	3.3	22
24	Dichroic Polarizing Metasurfaces for Color Control and Pseudo-Color Encoding. IEEE Photonics Technology Letters, 2021, 33, 77-80.	2.5	8
25	Non-orthogonal-polarization multiplexed metasurfaces for tri-channel gray-imaging. Optics Express, 2021, 29, 134.	3.4	19
26	Metasurfaces with single-sized antennas for reconstructing full-color holographic images without cross talk. Optics Letters, 2021, 46, 5417.	3.3	5
27	Metasurface-enabled three-in-one nanoprints by multifunctional manipulations of light. IScience, 2021, 24, 103510.	4.1	8
28	Dual-Channel Binary Gray-Image Display Enabled with Malus-Assisted Metasurfaces. Physical Review Applied, 2020, 13, .	3.8	31
29	A Single elled Triâ€Functional Metasurface Enabled with Triple Manipulations of Light. Advanced Functional Materials, 2020, 30, 2003990.	14.9	71
30	Malus-metasurface-assisted polarization multiplexing. Light: Science and Applications, 2020, 9, 101.	16.6	176
31	Multiplexed Anticounterfeiting Meta-image Displays with Single-Sized Nanostructures. Nano Letters, 2020, 20, 1830-1838.	9.1	142
32	Threeâ€Channel Metasurfaces for Simultaneous Metaâ€Holography and Metaâ€Nanoprinting: A Singleâ€Cell Design Approach. Laser and Photonics Reviews, 2020, 14, 2000032.	8.7	110
33	Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. Biomedical Optics Express, 2020, 11, 1401.	2.9	16
34	2ï€-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light. Optics Express, 2020, 28, 12331.	3.4	10
35	Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls. Optics Express, 2020, 28, 26359.	3.4	10
36	Single-size nanostructured metasurface for dual-channel vortex beam generation. Optics Letters, 2020, 45, 3773.	3.3	28

#	Article	IF	CITATIONS
37	Planar ultrathin omni-directional perfect absorber utilizing amorphous silicon for photovoltaics. Optical Materials Express, 2020, 10, 532.	3.0	16
38	Zero-order-free meta-holograms in a broadband visible range. Photonics Research, 2020, 8, 723.	7.0	34
39	Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more. Nanophotonics, 2020, 9, 3699-3731.	6.0	42
40	Single-cell nanostructured metasurface for simultaneous holography and gray-image display. , 2020, , .		0
41	LCOS based Optical Wireless Communication System for Multicast Service. , 2020, , .		0
42	Spatial Frequency Multiplexed Meta-Holography and Meta-Nanoprinting. ACS Nano, 2019, 13, 9237-9246.	14.6	76
43	Multichannel Metasurfaces for Anticounterfeiting. Physical Review Applied, 2019, 12, .	3.8	49
44	Cherenkov polaritonic radiation in a natural hyperbolic material. Carbon, 2019, 150, 136-141.	10.3	24
45	Reconfigurable step-zoom metalens without optical and mechanical compensations. Optics Express, 2019, 27, 12221.	3.4	51
46	Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces. Optics Express, 2019, 27, 27927.	3.4	40
47	Visible-frequency meta-gratings for light steering, beam splitting and absorption tunable functionality. Optics Express, 2019, 27, 37318.	3.4	15
48	Reconfigurable continuous-zoom metalens in visible band. Chinese Optics Letters, 2019, 17, 111603.	2.9	32
49	Graphene surface-polariton in-plane Cherenkov radiation. Carbon, 2018, 133, 249-253.	10.3	22
50	Full-space Cloud of Random Points with a Scrambling Metasurface. Light: Science and Applications, 2018, 7, 63.	16.6	112
51	Depth perception based 3D holograms enabled with polarization-independent metasurfaces. Optics Express, 2018, 26, 11843.	3.4	33
52	Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase. Physical Review B, 2018, 97, .	3.2	34
53	Addressable metasurfaces for dynamic holography and optical information encryption. Science Advances, 2018, 4, eaar6768.	10.3	328

54 Graphene Plasmonic in-Plane Cherenkov Radiation. , 2018, , .

#	Article	IF	CITATIONS
55	Broadband and high-efficiency half-waveplate based on dielectric metasurfaces. , 2018, , .		1
56	Geometric Phase Generated Optical Illusion. Scientific Reports, 2017, 7, 11440.	3.3	16
57	Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Science Advances, 2017, 3, e1701477.	10.3	112
58	Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light. ACS Nano, 2017, 11, 9382-9389.	14.6	157
59	Dual field-of-view step-zoom metalens. Optics Letters, 2017, 42, 1261.	3.3	48
60	High pulse repetition frequency fiber-coupled laser-diode module. Optical Engineering, 2016, 55, 126108.	1.0	0
61	A Pixilated Spectrometer Based on Single Liquid Crystal and Sparse Algorithm. IEEE Photonics Journal, 2016, 8, 1-6.	2.0	2
62	Numerical ray-tracing approach with laser intensity distribution for LIDAR signal power function computation. Optical Review, 2016, 23, 770-775.	2.0	0
63	Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays. Optics Express, 2016, 24, 6749.	3.4	35
64	High performance optical elements and devices based on dielectric metasurface. , 2016, , .		0
65	Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10, 308-312.	31.5	2,086
66	All-silicon nanorod-based Dammann gratings. Optics Letters, 2015, 40, 4285.	3.3	55
67	Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6, 8241.	12.8	755
68	A microspectrometer based on subwavelength metal nanohole array. , 2014, , .		1
69	Design the diffractive optical element with large diffraction angle. Proceedings of SPIE, 2014, , .	0.8	1
70	A planar hyperlens-based device for super-resolution magnification imaging in a far field. Chinese Optics Letters, 2014, 12, S11601-311603.	2.9	0
71	Focusing microwaves into subwavelength dimensions with a half-cylindrical hyperlens based on split ring resonators. Chinese Optics Letters, 2014, 12, 081602-81605.	2.9	0
72	The Impact of Parameters of Hyperlens with Artificially Engineered Metamaterial on Sub-Diffraction Imaging. Advanced Materials Research, 2012, 482-484, 1111-1114.	0.3	0

#	Article	IF	CITATIONS
73	A hyperlens-based device for nanoscale focusing of light. Chinese Optics Letters, 2012, 10, 042302-42304.	2.9	13
74	The Influence of Noise on Range Error of Satellite Laser Altimeter with Recorded Waveforms. Communications in Computer and Information Science, 2012, , 158-163.	0.5	0
75	A Hyperlens-embedded solid immersion lens for beam focusing beyond the diffraction limit. IEEE Photonics Technology Letters, 2011, , .	2.5	3
76	The phase mode of reflected beam from laser retroreflector with dihedral angle and flatness error. Optical Review, 2011, 18, 1-6.	2.0	13
77	Design method to enhance the transmittance of a structured lens based on nonperiodic sampling. Optical Engineering, 2011, 50, 018001.	1.0	2
78	Focusing a beam beyond the diffraction limit using a hyperlens-based device. Chinese Physics B, 2011, 20, 117802.	1.4	1
79	Algorithm Optimization and Mask Data Generating for Dammann Gratings in Laser Medical Applications. , 2010, , .		0
80	Research on far-field diffraction of cube-corner retroreflector in the satellite laser ranging system. Proceedings of SPIE, 2010, , .	0.8	2
81	Modeling and experimental verification of optical materials formed by stacked nanostrips. Optics Express, 2010, 18, 14842.	3.4	4
82	High-power laser diode array beam-shaping by rhomboid prism arrays. Journal of Optics, 2008, 10, 075301.	1.5	0
83	A binary beam-splitter for lidar beam-shaping in laser imaging application. , 2007, , .		2
84	A fluctuation-insensitive diffractive optical homogenizer for excimer beam shaping. , 2005, , .		1
85	High-power LDA beam transformation using diffractive grating array. , 2005, , .		0
86	Micrograting-array beam-shaping technique for asymmetrical laser beams. Applied Optics, 2005, 44, 3540.	2.1	8