Lloyd A Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939998/publications.pdf

Version: 2024-02-01

157 papers 21,868 citations

78 h-index 145 g-index

157 all docs

157 does citations

157 times ranked

21370 citing authors

#	Article	IF	CITATIONS
1	Rapid ATF4 Depletion Resets Synaptic Responsiveness after cLTP. ENeuro, 2021, 8, ENEURO.0239-20.2021.	0.9	5
2	Cell-Penetrating CEBPB and CEBPD Leucine Zipper Decoys as Broadly Acting Anti-Cancer Agents. Cancers, 2021, 13, 2504.	1.7	18
3	Dominant-Negative ATF5 Compromises Cancer Cell Survival by Targeting CEBPB and CEBPD. Molecular Cancer Research, 2020, 18, 216-228.	1.5	23
4	The drug adaptaquin blocks ATF4/CHOP-dependent pro-death Trib3 induction and protects in cellular and mouse models of Parkinson's disease. Neurobiology of Disease, 2020, 136, 104725.	2.1	37
5	Stress-induced phospho-ubiquitin formation causes parkin degradation. Scientific Reports, 2019, 9, 11682.	1.6	10
6	Dominant-negative ATF5 rapidly depletes survivin in tumor cells. Cell Death and Disease, 2019, 10, 709.	2.7	14
7	Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease. Experimental Neurology, 2018, 303, 95-107.	2.0	26
8	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
9	Context-dependent expression of a conditionally-inducible form of active Akt. PLoS ONE, 2018, 13, e0197899.	1.1	3
10	Brain-Derived Neurotrophic Factor Elevates Activating Transcription Factor 4 (ATF4) in Neurons and Promotes ATF4-Dependent Induction of Sesn2. Frontiers in Molecular Neuroscience, 2018, 11, 62.	1.4	15
11	Activating Transcription Factor 4 (ATF4) Regulates Neuronal Activity by Controlling GABA _B R Trafficking. Journal of Neuroscience, 2018, 38, 6102-6113.	1.7	27
12	Cdc25A phosphatase: a key cell cycle protein that regulates neuron death in disease and development. Cell Death and Disease, 2017, 8, e2692-e2692.	2.7	9
13	Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or \hat{l}^2 -amyloid. Cell Death Discovery, 2016, 2, 16083.	2.0	16
14	A Synthetic Cell-Penetrating Dominant-Negative ATF5 Peptide Exerts Anticancer Activity against a Broad Spectrum of Treatment-Resistant Cancers. Clinical Cancer Research, 2016, 22, 4698-4711.	3.2	63
15	Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of RhoGDl $\hat{1}\pm$. Scientific Reports, 2016, 6, 36952.	1.6	12
16	Regression/Eradication of gliomas in mice by a systemically-deliverable ATF5 dominant-negative peptide. Oncotarget, 2016, 7, 12718-12730.	0.8	23
17	Specific Downregulation of Hippocampal ATF4 Reveals a Necessary Role in Synaptic Plasticity and Memory. Cell Reports, 2015, 11, 183-191.	2.9	84
18	Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. Journal of Neuroscience, 2015, 35, 10731-10749.	1.7	44

#	Article	IF	Citations
19	Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology. Frontiers in Cellular Neuroscience, 2014, 8, 177.	1.8	45
20	ATF4 Protects Against Neuronal Death in Cellular Parkinson's Disease Models by Maintaining Levels of Parkin. Journal of Neuroscience, 2013, 33, 2398-2407.	1.7	106
21	Sh3rf2/POSHER Protein Promotes Cell Survival by Ring-mediated Proteasomal Degradation of the c-Jun N-terminal Kinase Scaffold POSH (Plenty of SH3s) Protein. Journal of Biological Chemistry, 2012, 287, 2247-2256.	1.6	25
22	Cell death and the developing enteric nervous system. Neurochemistry International, 2012, 61, 839-847.	1.9	21
23	Reciprocal actions of ATF5 and Shh in proliferation of cerebellar granule neuron progenitor cells. Developmental Neurobiology, 2012, 72, 789-804.	1.5	12
24	Use of PC12 Cells and Rat Superior Cervical Ganglion Sympathetic Neurons as Models for Neuroprotective Assays Relevant to Parkinson's Disease. Methods in Molecular Biology, 2012, 846, 201-211.	0.4	54
25	Akt as a Victim, Villain and Potential Hero in Parkinson's Disease Pathophysiology and Treatment. Cellular and Molecular Neurobiology, 2011, 31, 969-978.	1.7	62
26	RTP801/REDD1 Regulates the Timing of Cortical Neurogenesis and Neuron Migration. Journal of Neuroscience, 2011, 31, 3186-3196.	1.7	55
27	Gata2 Is Required for Migration and Differentiation of Retinorecipient Neurons in the Superior Colliculus. Journal of Neuroscience, 2011, 31, 4444-4455.	1.7	31
28	Sertad1 Plays an Essential Role in Developmentaland Pathological Neuron Death. Journal of Neuroscience, 2010, 30, 3973-3982.	1.7	23
29	Rapamycin Protects against Neuron Death in <i>In Vitro</i> and <i>In Vivo</i> Models of Parkinson's Disease. Journal of Neuroscience, 2010, 30, 1166-1175.	1.7	409
30	Identification of a Novel DNA Binding Site and a Transcriptional Target for Activating Transcription Factor 5 in C6 Glioma and MCF-7 Breast Cancer Cells. Molecular Cancer Research, 2009, 7, 933-943.	1.5	40
31	Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 478-500.	2.2	247
32	Cbl negatively regulates JNK activation and cell death. Cell Research, 2009, 19, 950-961.	5.7	11
33	The transcription factor ATF5: role in neurodevelopment and neural tumors. Journal of Neurochemistry, 2009, 108, 11-22.	2.1	76
34	Glucagon-like Peptide-1 (GLP-1) Diminishes Neuronal Degeneration and Death Caused by NGF Deprivation by Suppressing Bim Induction. Neurochemical Research, 2008, 33, 1845-1851.	1.6	53
35	RTP801 Is Induced in Parkinson's Disease and Mediates Neuron Death by Inhibiting Akt Phosphorylation/Activation. Journal of Neuroscience, 2008, 28, 14363-14371.	1.7	201
36	Bim Is Elevated in Alzheimer's Disease Neurons and Is Required for Â-Amyloid-Induced Neuronal Apoptosis. Journal of Neuroscience, 2007, 27, 893-900.	1.7	99

#	Article	lF	Citations
37	Proapoptotic Nix Activates the JNK Pathway by Interacting with POSH and Mediates Death in a Parkinson Disease Model. Journal of Biological Chemistry, 2007, 282, 1288-1295.	1.6	35
38	Pro-apoptotic Bim Induction in Response to Nerve Growth Factor Deprivation Requires Simultaneous Activation of Three Different Death Signaling Pathways. Journal of Biological Chemistry, 2007, 282, 29368-29374.	1.6	88
39	Identification of POSH2, a Novel Homologue of the c-Jun N-Terminal Kinase Scaffold Protein POSH. Developmental Neuroscience, 2007, 29, 355-362.	1.0	8
40	The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. International Journal of Cancer, 2007, 120, 1883-1890.	2.3	82
41	Activation of the Apoptotic JNK Pathway Through the Rac1â€Binding Scaffold Protein POSH. Methods in Enzymology, 2006, 406, 479-489.	0.4	13
42	Siah1 Interacts with the Scaffold Protein POSH to Promote JNK Activation and Apoptosis*. Journal of Biological Chemistry, 2006, 281, 303-312.	1.6	57
43	Direct Interaction of the Molecular Scaffolds POSH and JIP Is Required for Apoptotic Activation of JNKs. Journal of Biological Chemistry, 2006, 281, 15517-15524.	1.6	61
44	RTP801 Is Elevated in Parkinson Brain Substantia Nigral Neurons and Mediates Death in Cellular Models of Parkinson's Disease by a Mechanism Involving Mammalian Target of Rapamycin Inactivation. Journal of Neuroscience, 2006, 26, 9996-10005.	1.7	159
45	CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. Journal of Neurochemistry, 2005, 95, 974-986.	2.1	264
46	Puma and p53 Play Required Roles in Death Evoked in a Cellular Model of Parkinson Disease. Neurochemical Research, 2005, 30, 839-845.	1.6	71
47	You Can't Go Home Again: Transcriptionally Driven Alteration of Cell Signaling by NGF. Neurochemical Research, 2005, 30, 1347-1352.	1.6	18
48	Downregulation of Activating Transcription Factor 5 Is Required for Differentiation of Neural Progenitor Cells into Astrocytes. Journal of Neuroscience, 2005, 25, 3889-3899.	1.7	83
49	Regulation of Apoptotic c-Jun N-Terminal Kinase Signaling by a Stabilization-Based Feed-Forward Loop. Molecular and Cellular Biology, 2005, 25, 9949-9959.	1.1	58
50	Bim Is a Direct Target of a Neuronal E2F-Dependent Apoptotic Pathway. Journal of Neuroscience, 2005, 25, 8349-8358.	1.7	92
51	Regulation of neuron survival and death by p130 and associated chromatin modifiers. Genes and Development, 2005, 19, 719-732.	2.7	68
52	Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiology of Disease, 2005, 18, 54-74.	2.1	84
53	ATF5 regulates the proliferation and differentiation of oligodendrocytes. Molecular and Cellular Neurosciences, 2005, 29, 372-380.	1.0	69
54	POSH REGULATES JNK ACTIVATION BY THE BH3-ONLY PROTEIN NIX Critical Care Medicine, 2005, 33, A16.	0.4	0

#	Article	IF	Citations
55	B-Myb and C-Myb Play Required Roles in Neuronal Apoptosis Evoked by Nerve Growth Factor Deprivation and DNA Damage. Journal of Neuroscience, 2004, 24, 8720-8725.	1.7	61
56	Malignant pheochromocytoma: current status and initiatives for future progress. Endocrine-Related Cancer, 2004, 11, 423-436.	1.6	299
57	Highly Efficient Small Interfering RNA Delivery to Primary Mammalian Neurons Induces MicroRNA-Like Effects before mRNA Degradation. Journal of Neuroscience, 2004, 24, 10040-10046.	1.7	201
58	POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO Journal, 2003, 22, 252-261.	3.5	167
59	Regulated Expression of ATF5 Is Required for the Progression of Neural Progenitor Cells to Neurons. Journal of Neuroscience, 2003, 23, 4590-4600.	1.7	123
60	Nerve Growth Factor (NGF) Down-regulates the Bcl-2 Homology 3 (BH3) Domain-only Protein Bim and Suppresses Its Proapoptotic Activity by Phosphorylation. Journal of Biological Chemistry, 2002, 277, 49511-49516.	1.6	159
61	The Basic Region and Leucine Zipper Transcription Factor MafK Is a New Nerve Growth Factor-Responsive Immediate Early Gene That Regulates Neurite Outgrowth. Journal of Neuroscience, 2002, 22, 8971-8980.	1.7	40
62	Tyrosine Phosphorylation of Extracellular Signal-Regulated Protein Kinase 4 in Response to Growth Factors. Journal of Neurochemistry, 2002, 66, 1191-1197.	2.1	21
63	Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease. Journal of Neuroscience, 2002, 22, 10690-10698.	1.7	515
64	Chapter 18 Model cell lines for the study of apoptosis in vitro. Methods in Cell Biology, 2001, 66, 417-436.	0.5	26
65	Regulation of Neuronal Survival and Death by E2F-Dependent Gene Repression and Derepression. Neuron, 2001, 32, 425-438.	3.8	123
66	Death in the Balance: Alternative Participation of the Caspase-2 and -9 Pathways in Neuronal Death Induced by Nerve Growth Factor Deprivation. Journal of Neuroscience, 2001, 21, 5007-5016.	1.7	136
67	Expression of A53T Mutant But Not Wild-Type α-Synuclein in PC12 Cells Induces Alterations of the Ubiquitin-Dependent Degradation System, Loss of Dopamine Release, and Autophagic Cell Death. Journal of Neuroscience, 2001, 21, 9549-9560.	1.7	540
68	Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell and Tissue Research, 2001, 305, 217-228.	1.5	219
69	Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. Journal of Neurochemistry, 2001, 76, 1165-1176.	2.1	80
70	beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. Journal of Neurochemistry, 2001, 77, 157-164.	2.1	235
71	The MLK Family Mediates c-Jun N-Terminal Kinase Activation in Neuronal Apoptosis. Molecular and Cellular Biology, 2001, 21, 4713-4724.	1.1	251
72	CEP-1347 (KT7515), a Semisynthetic Inhibitor of the Mixed Lineage Kinase Family. Journal of Biological Chemistry, 2001, 276, 25302-25308.	1.6	187

#	Article	IF	Citations
73	Characterization of a Novel Isoform of Caspase-9 That Inhibits Apoptosis. Journal of Biological Chemistry, 2001, 276, 12190-12200.	1.6	38
74	Involvement of Retinoblastoma Family Members and E2F/DP Complexes in the Death of Neurons Evoked by DNA Damage. Journal of Neuroscience, 2000, 20, 3104-3114.	1.7	146
75	NADE, a p75NTR-associated Cell Death Executor, Is Involved in Signal Transduction Mediated by the Common Neurotrophin Receptor p75NTR. Journal of Biological Chemistry, 2000, 275, 17566-17570.	1.6	175
76	Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiology of Aging, 2000, 21, 771-781.	1.5	141
77	Caspase-Dependent and -Independent Death of Camptothecin-Treated Embryonic Cortical Neurons. Journal of Neuroscience, 1999, 19, 6235-6247.	1.7	195
78	Role of Cell Cycle Regulatory Proteins in Cerebellar Granule Neuron Apoptosis. Journal of Neuroscience, 1999, 19, 8747-8756.	1.7	238
79	Neurotrophin Signaling via Trks and p75. Experimental Cell Research, 1999, 253, 131-142.	1.2	320
80	Promotion of Neuronal Survival by GM1 Ganglioside: Phenomenology and Mechanism of Action. Annals of the New York Academy of Sciences, 1998, 845, 263-273.	1.8	59
81	Cyclin-dependent Kinases Participate in Death of Neurons Evoked by DNA-damaging Agents. Journal of Cell Biology, 1998, 143, 457-467.	2.3	252
82	The Src Homology Domain 3 (SH3) of a Yeast Type I Myosin, Myo5p, Binds to Verprolin and Is Required for Targeting to Sites of Actin Polarization. Journal of Cell Biology, 1998, 141, 1357-1370.	2.3	129
83	Neuroprotective Actions of Dipyridamole on Cultured CNS Neurons. Journal of Neuroscience, 1998, 18, 5112-5123.	1.7	63
84	Multiple Pathways of Neuronal Death Induced by DNA-Damaging Agents, NGF Deprivation, and Oxidative Stress. Journal of Neuroscience, 1998, 18, 830-840.	1.7	229
85	Caspase-2 (Nedd-2) Processing and Death of Trophic Factor-Deprived PC12 Cells and Sympathetic Neurons Occur Independently of Caspase-3 (CPP32)-Like Activity. Journal of Neuroscience, 1998, 18, 9204-9215.	1.7	100
86	Prevention of PC12 Cell Death by <i>N</i> -Acetylcysteine Requires Activation of the Ras Pathway. Journal of Neuroscience, 1998, 18, 4042-4049.	1.7	158
87	Peripherin Is Tyrosineâ€Phosphorylated at Its Carboxylâ€Terminal Tyrosine. Journal of Neurochemistry, 1998, 70, 540-549.	2.1	22
88	Autophosphorylation of Activation Loop Tyrosines Regulates Signaling by the TRK Nerve Growth Factor Receptor. Journal of Biological Chemistry, 1997, 272, 10957-10967.	1.6	127
89	Apoptosis in neurodegenerative disorders. Current Opinion in Neurology, 1997, 10, 299-305.	1.8	141
90	Cyclin Dependent Kinase Inhibitors and Dominant Negative Cyclin Dependent Kinase 4 and 6 Promote Survival of NGF-Deprived Sympathetic Neurons. Journal of Neuroscience, 1997, 17, 8975-8983.	1.7	265

#	Article	IF	Citations
91	G1/S Cell Cycle Blockers and Inhibitors of Cyclin-Dependent Kinases Suppress Camptothecin-Induced Neuronal Apoptosis. Journal of Neuroscience, 1997, 17, 1256-1270.	1.7	266
92	Nedd2 Is Required for Apoptosis after Trophic Factor Withdrawal, But Not Superoxide Dismutase (SOD1) Downregulation, in Sympathetic Neurons and PC12 Cells. Journal of Neuroscience, 1997, 17, 1911-1918.	1.7	154
93	Ordering the Multiple Pathways of Apoptosis. Trends in Cardiovascular Medicine, 1997, 7, 294-301.	2.3	16
94	Inhibitors of Trypsin-Like Serine Proteases Inhibit Processing of the Caspase Nedd-2 and Protect PC12 Cells and Sympathetic Neurons from Death Evoked by Withdrawal of Trophic Support. Journal of Neurochemistry, 1997, 69, 1425-1437.	2.1	60
95	Mapping of Unconventional Myosins in Mouse and Human. Genomics, 1996, 36, 431-439.	1.3	84
96	Inhibitors of Cyclin-dependent Kinases Promote Survival of Post-mitotic Neuronally Differentiated PC12 Cells and Sympathetic Neurons. Journal of Biological Chemistry, 1996, 271, 8161-8169.	1.6	230
97	Ordering the Cell Death Pathway. Journal of Biological Chemistry, 1996, 271, 21898-21905.	1.6	207
98	Induction of CPP32-like Activity in PC12 Cells by Withdrawal of Trophic Support. Journal of Biological Chemistry, 1996, 271, 30663-30671.	1.6	133
99	Prevention of Apoptotic Neuronal Death by GM1 Ganglioside. Journal of Biological Chemistry, 1995, 270, 3074-3080.	1.6	185
100	N-Acetylcysteine-promoted Survival of PC12 Cells Is Glutathione-independent but Transcription-dependent. Journal of Biological Chemistry, 1995, 270, 26827-26832.	1.6	146
101	Deletion of a conserved juxtamembrane sequence in Trk abolishes NGF-promoted neuritogenesis. Neuron, 1995, 15, 395-406.	3.8	149
102	Early events in neurotrophin signalling via Trk and p75 receptors. Current Opinion in Neurobiology, 1995, 5, 579-587.	2.0	297
103	Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. Journal of Neurobiology, 1994, 25, 974-988.	3.7	143
104	Trk receptors use redundant signal transduction pathways involving SHC and PLC- \hat{I}^31 to mediate NGF responses. Neuron, 1994, 12, 691-705.	3.8	520
105	Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron, 1993, 10, 137-149.	3.8	524
106	A Purine Analogâ€Sensitive Protein Kinase Activity Associates with Trk Nerve Growth Factor Receptors. Journal of Neurochemistry, 1993, 61, 664-672.	2.1	8
107	Polymer-Encapsulated PC12 Cells: Long-Term Survival and Associated Reduction in Lesion-Induced Rotational Behavior. Cell Transplantation, 1992, 1, 255-264.	1.2	84
108	NGF and other growth factors induce an association between ERK1 and the NGF receptor, gp140prototrk. Neuron, 1992, 9, 1053-1065.	3.8	105

#	Article	IF	Citations
109	6-Methylmercaptopurine Riboside Is a Potent and Selective Inhibitor of Nerve Growth Factor-Activated Protein Kinase N. Journal of Neurochemistry, 1992, 58, 700-708.	2.1	30
110	The peripherin gene maps to mouse chromosome 15. Genomics, 1991, 9, 369-372.	1.3	8
111	The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell, 1991, 66, 961-966.	13.5	249
112	Nerve Growth Factor Potentiates Bradykinin-Induced Calcium Influx and Release in PC12 Cells. Journal of Neurochemistry, 1991, 57, 562-574.	2.1	19
113	Multiple Pathways of N-Kinase Activation in PC12 Cells. Journal of Neurochemistry, 1990, 54, 424-433.	2.1	29
114	Regulation of peripherin and neurofilament expression in regenerating rat motor neurons. Brain Research, 1990, 529, 232-238.	1.1	143
115	Nerve Growth Factor (NGF) Responses by Non-Neuronal Cells: Detection by Assay of a Novel NGF-Activated Protein Kinase. Growth Factors, 1990, 2, 321-331.	0.5	1
116	Functional receptors for nerve growth factor on Ewing's sarcoma and Wilm's tumor cells. Journal of Cellular Physiology, 1989, 141, 60-64.	2.0	16
117	A new neuronal intermediate filament protein. Trends in Neurosciences, 1989, 12, 228-230.	4.2	42
118	Relationship Between the Nerve Growth Factor-Regulated Clone 73 Gene Product and the 58-Kilodalton Neuronal Intermediate Filament Protein (Peripherin). Journal of Neurochemistry, 1988, 51, 1317-1320.	2.1	55
119	[18] PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. Methods in Enzymology, 1987, 147, 207-216.	0.4	230
120	Rapid regulation of neuronal growth cone shape and surface morphology by nerve growth factor. Neurochemical Research, 1987, 12, 861-868.	1.6	22
121	Does Phospholipid Methylation Play a Role in the Primary Mechanism of Action of Nerve Growth Factor?. Journal of Neurochemistry, 1985, 45, 853-859.	2.1	12
122	Rapid Activation of Tyrosine Hydroxylase in Response to Nerve Growth Factor. Journal of Neurochemistry, 1984, 42, 1728-1734.	2.1	48
123	Release of the NILE and Other Glycoproteins from Cultured PC 12 Rat Pheochromocytoma Cells and Sympathetic Neurons. Journal of Neurochemistry, 1984, 43, 841-848.	2.1	28
124	The importance of both early and delayed responses in the biological actions of nerve growth factor. Trends in Neurosciences, 1984, 7, 91-94.	4.2	92
125	The quantitative bioassay of nerve growth factor: use of frozen †primed' PC12 pheochromocytoma cells. Brain Research, 1983, 263, 177-180.	1.1	44
126	Genomic and Non-Genomic Actions of Nerve Growth Factor in Development. Progress in Brain Research, 1983, 58, 347-357.	0.9	5

#	Article	IF	Citations
127	PC12 Pheochromocytoma Cultures in Neurobiological Research. Advances in Cellular Neurobiology, 1982, 3, 373-414.	1.0	615
128	Nerve growth factor-induced neuronal differentiation of PC12 pheochromocytoma cells: Lack of inhibition by a tumor promoter. Brain Research, 1982, 247, 115-119.	1.1	57
129	The role of transcription-dependent priming in nerve growth factor promoted neurite outgrowth. Developmental Biology, 1982, 91, 305-316.	0.9	127
130	Nerve growth factor has both mitogenic and antimitogenic activity. Developmental Biology, 1982, 94, 477-482.	0.9	100
131	Development of Muscarinic Cholinergic Receptors in Chick Embryo Sympathetic Ganglia. Developmental Neuroscience, 1982, 5, 375-378.	1.0	4
132	Development of the multiple molecular forms of acetyl-cholinesterase in chick paravertebral sympathetic ganglia: An in vivo and in vitro study. Brain Research, 1980, 182, 383-396.	1.1	18
133	The effects of nerve growth factor on acetylcholinesterase and its multiple forms in cultures of rat PC12 pheochromocytoma cells: Increased total specific activity and appearance of the 16 S molecular form. Developmental Biology, 1980, 76, 238-243.	0.9	113
134	Nerve growth factor in the goldfish brain: biological assay studies using pheochromocytoma cells. Brain Research, 1979, 162, 164-168.	1.1	39
135	Induction of ornithine decarboxylase by nerve growth factor dissociated from effects on survival and neurite outgrowth. Nature, 1978, 276, 191-194.	13.7	112
136	SHORT-TERM REGULATION OF CATECHOLAMINE BIOSYNTHESIS IN A NERVE GROWTH FACTOR RESPONSIVE CLONAL LINE OF RAT PHEOCHROMOCYTOMA CELLS. Journal of Neurochemistry, 1978, 30, 549-555.	2.1	83
137	RELEASE OF NOREPINEPHRINE FROM NEURONS IN DISSOCIATED CELL CULTURES OF CHICK SYMPATHETIC GANGLIA VIA STIMULATION OF NICOTINIC AND MUSCARINIC ACETYLCHOLINE RECEPTORS. Journal of Neurochemistry, 1978, 30, 579-586.	2.1	32
138	NGF stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells. Cell, 1978, 15, 357-365.	13.5	182
139	Chick sympathetic neurons develop receptors for $\hat{l}\pm$ -bungarotoxin in vitro, but the toxin does not block nicotinic receptors. Brain Research, 1978, 154, 83-93.	1.1	64
140	Neuroendocrine Neoplasms and Their Cells of Origin. New England Journal of Medicine, 1977, 296, 919-925.	13.9	107
141	Quantitative in vitro studies on the nerve growth factor (NGF) requirement of neurons. Developmental Biology, 1977, 58, 96-105.	0.9	122
142	Quantitative in vitro studies on the nerve growth factor (NGF) requirement of neurons. Developmental Biology, 1977, 58, 106-113.	0.9	139
143	Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Research, 1977, 129, 247-263.	1.1	409
144	Ascorbic acid transport by a clonal line of pheochromocytoma cells. Brain Research, 1977, 136, 131-140.	1.1	30

#	Article	IF	CITATIONS
145	Release of [3H]norepinephrine from a clonal line of pheochromocytoma cells (PC12) by nicotinic cholinergic stimulation. Brain Research, 1977, 138, 521-528.	1.1	143
146	A quantitative bioassay for nerve growth factor (NGF) activity employing a clonal pheochromocytoma cell line. Brain Research, 1977, 133, 350-353.	1.1	203
147	Synthesis, storage and release of acetylcholine by a noradrenergic pheochromocytoma cell line. Nature, 1977, 268, 349-351.	13.7	256
148	Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature, 1977, 268, 501-504.	13.7	401
149	DOPAMINERGIC PROPERTIES OF A SOMATIC CELL HYBRID LINE OF MOUSE NEUROBLASTOMA X SYMPATHETIC GANGLION CELLS. Journal of Neurochemistry, 1977, 29, 141-150.	2.1	23
150	A medified bromosulfalein assay for the quantitative estimation of protein. Analytical Biochemistry, 1977, 83, 75-81.	1.1	18
151	The binding properties and regional ontogeny of receptors for α-bungarotoxin in chick brain. Brain Research, 1976, 113, 111-126.	1.1	45
152	Binding of \hat{l}_{\pm} -bungarotoxin to chick sympathetic ganglia: properties of the receptor and its rate of appearance during development. Brain Research, 1976, 111, 135-145.	1.1	66
153	Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature, 1975, 258, 341-342.	13.7	226
154	Histofluorescence study of chromaffin cells in dissociated cell cultures of chick embryo sympathetic ganglia. Journal of Neurobiology, 1974, 5, 65-83.	3.7	42
155	Electrophysiological characteristics of chick embryo sympathetic neurons in dissociated cell culture. Brain Research, 1974, 68, 235-252.	1.1	27
156	Enhancement in excitability properties of mouse neuroblastoma cells cultured in the presence of dibutyryl cyclic AMP. Brain Research, 1974, 72, 340-345.	1.1	56
157	α-Bungarotoxin used as a Probe for Acetylcholine Receptors of Cultured Neurones. Nature, 1973, 243, 163-166.	13.7	99