Aritro Nath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939934/publications.pdf Version: 2024-02-01

Δριτρο Νλτμ

#	Article	IF	CITATIONS
1	RAGE Inhibitors as Alternatives to Dexamethasone for Managing Cerebral Edema Following Brain Tumor Surgery. Neurotherapeutics, 2022, 19, 635-648.	4.4	4
2	ENDORSE: a prognostic model for endocrine therapy in estrogenâ€receptorâ€positive breast cancers. Molecular Systems Biology, 2022, 18, .	7.2	5
3	A`one-two punch' therapy strategy to target chemoresistance in estrogen receptor positive breast cancer. Translational Oncology, 2021, 14, 100946.	3.7	8
4	Palmitate-Induced IRE1–XBP1–ZEB Signaling Represses Desmoplakin Expression and Promotes Cancer Cell Migration. Molecular Cancer Research, 2021, 19, 240-248.	3.4	11
5	Leveraging Single-Cell Approaches in Cancer Precision Medicine. Trends in Cancer, 2021, 7, 359-372.	7.4	18
6	Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nature Communications, 2021, 12, 3039.	12.8	24
7	Abstract 3141: Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. , 2021, , .		0
8	Abstract 341: Predicting clinical endocrine response in advanced breast cancers using a reproducible low-dimensional biomarker. , 2021, , .		0
9	Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma. International Journal of Molecular Sciences, 2021, 22, 11168.	4.1	14
10	Long non-coding RNA transcriptome of uncharacterized samples can be accurately imputed using protein-coding genes. Briefings in Bioinformatics, 2020, 21, 637-648.	6.5	6
11	Emerging role of long non-coding RNAs in cancer precision medicine. Molecular and Cellular Oncology, 2020, 7, 1684130.	0.7	3
12	iMIRAGE: an R package to impute microRNA expression using protein-coding genes. Bioinformatics, 2020, 36, 2608-2610.	4.1	1
13	Clinical evaluation of germline polymorphisms associated with capecitabine toxicity in breast cancer: TBCRC-015. Breast Cancer Research and Treatment, 2020, 181, 623-633.	2.5	6
14	Exploiting collateral sensitivity controls growth of mixed culture of sensitive and resistant cells and decreases selection for resistant cells in a cell line model. Cancer Cell International, 2020, 20, 253.	4.1	17
15	The success story of drug repurposing in breast cancer. , 2020, , 173-190.		4
16	The role of long non-coding RNA ANRIL in chemosensitivity in osteosarcoma and clinical outcomes Journal of Clinical Oncology, 2020, 38, e22515-e22515.	1.6	0
17	Discovering long noncoding RNA predictors of anticancer drug sensitivity beyond protein-coding genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22020-22029.	7.1	37
18	MicroRNA targeting energy metabolism in ovarian cancer: a potent contender for future therapeutics. Annals of Translational Medicine, 2019, 7, S299-S299.	1.7	1

Aritro Nath

#	Article	IF	CITATIONS
19	Abstract 3578: Comprehensive pharmacogenomic analysis establishes IncRNAs as protein-coding independent biomarker of drug response in human cancers. , 2019, , .		0
20	Abstract 3578: Comprehensive pharmacogenomic analysis establishes IncRNAs as protein-coding independent biomarker of drug response in human cancers. , 2019, , .		0
21	Cancer expression quantitative trait loci (eQTLs) can be determined from heterogeneous tumor gene expression data by modeling variation in tumor purity. Genome Biology, 2018, 19, 130.	8.8	27
22	Abstract 3897: Pharmacogenomic landscape of long non-coding RNAs in human cancers. , 2018, , .		0
23	Institutional Profile: Pharmacogenomic research in R Stephanie Huang Laboratory. Pharmacogenomics, 2017, 18, 519-522.	1.3	0
24	Pharmacogenetics and Pharmacogenomics of Targeted Therapeutics in Chronic Myeloid Leukemia. Molecular Diagnosis and Therapy, 2017, 21, 621-631.	3.8	14
25	Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies. Genome Research, 2017, 27, 1743-1751.	5.5	101
26	Discovering drugs to overcome chemoresistance in ovarian cancers based on the cancer genome atlas tumor transcriptome profile. Oncotarget, 2017, 8, 115102-115113.	1.8	1
27	Abstract 5035: IDWAS: Imputing drug response in large cohorts of cancer patients to discover novel predictive biomarkers. , 2017, , .		Ο
28	Abstract 3481: Leveraging protein coding gene expression profiles to accurately impute lncRNA transcriptome of cancer cells. , 2017, , .		0
29	Characterization of transcription factor response kinetics in parallel. BMC Biotechnology, 2016, 16, 62.	3.3	2
30	Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Scientific Reports, 2016, 6, 18669.	3.3	155
31	Abstract 2039: Exploring the longitudinal transcriptomic landscape of tyrosine kinase inhibitor treatment response in chronic myeloid leukemia patients. , 2016, , .		Ο
32	Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Scientific Reports, 2015, 5, 14752.	3.3	241
33	Rapid Fine Conformational Epitope Mapping Using Comprehensive Mutagenesis and Deep Sequencing. Journal of Biological Chemistry, 2015, 290, 26457-26470.	3.4	67
34	Abstract 5157: Elevated uptake of free fatty acids via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. , 2015, , .		0
35	Abstract A1-58: Revisiting cancer energetics: Establishing a link between altered fatty-acid metabolism and metastasis. , 2015, , .		0
36	Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells. BMC Systems Biology, 2013, 7, 9.	3.0	37

Aritro Nath

#	Article	IF	CITATIONS
37	Abstract C29: Free fatty acid induced epithelial to mesenchymal transition (EMT) in hepatocellular carcinoma cells. , 2013, , .		0
38	Ensemble Classification of Cancer Types and Biomarker Identification. Drug Development Research, 2012, 73, 414-419.	2.9	9
39	Relevance of Network Hierarchy in Cancer Drug-Target Selection. , 2012, , 339-362.		3
40	Synergy Analysis Reveals Association between Insulin Signaling and Desmoplakin Expression in Palmitate Treated HepG2 Cells. PLoS ONE, 2011, 6, e28138.	2.5	6
41	The Double-stranded RNA–dependent Protein Kinase Differentially Regulates Insulin Receptor Substrates 1 and 2 in HepG2 Cells. Molecular Biology of the Cell, 2010, 21, 3449-3458.	2.1	51