List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Canine Coronavirus Isolated from a Hospitalized Patient With Pneumonia in East Malaysia. Clinical Infectious Diseases, 2022, 74, 446-454.	5.8	142
2	Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters. Journal of Virology, 2022, 96, JVI0197321.	3.4	35
3	Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens, 2022, 11, 79.	2.8	23
4	Escherichia coli Nissle 1917 Enhances Efficacy of Oral Attenuated Human Rotavirus Vaccine in a Gnotobiotic Piglet Model. Vaccines, 2022, 10, 83.	4.4	3
5	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	145
6	Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Science Translational Medicine, 2022, 14, eabn8057.	12.4	150
7	Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2. Cell Host and Microbe, 2022, 30, 1093-1102.e3.	11.0	114
8	Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig Studies. Frontiers in Immunology, 2022, 13, 826268.	4.8	12
9	Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry. Viruses, 2022, 14, 1225.	3.3	2
10	Evaluation of a SARS-CoV-2 Surrogate Virus Neutralization Test for Detection of Antibody in Human, Canine, Cat, and Hamster Sera. Journal of Clinical Microbiology, 2021, 59, .	3.9	102
11	Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. PLoS Pathogens, 2021, 17, e1009237.	4.7	22
12	A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need. Lab on A Chip, 2021, 21, 1118-1130.	6.0	29
13	Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses, 2021, 13, 122.	3.3	10
14	Comparative Transcriptome Profiling of Human and Pig Intestinal Epithelial Cells after Porcine Deltacoronavirus Infection. Viruses, 2021, 13, 292.	3.3	14
15	Escherichia coli Nissle 1917 administered as a dextranomar microsphere biofilm enhances immune responses against human rotavirus in a neonatal malnourished pig model colonized with human infant fecal microbiota. PLoS ONE, 2021, 16, e0246193.	2.5	17
16	Escherichia coli Nissle 1917 Enhances Innate and Adaptive Immune Responses in a Ciprofloxacin-Treated Defined-Microbiota Piglet Model of Human Rotavirus Infection. MSphere, 2021, 6, .	2.9	14
17	Bovine Coronavirus and the Associated Diseases. Frontiers in Veterinary Science, 2021, 8, 643220.	2.2	68
18	Roles of bile acids in enteric virus replication. Animal Diseases, 2021, 1, 2.	1.4	8

#	Article	IF	CITATIONS
19	Replication of porcine deltacoronavirus is limited in the gastrointestinal tract of neonatal piglets co-infected simultaneously or 16 hours prior with virulent porcine epidemic diarrhea virus. Veterinary Microbiology, 2021, 261, 109206.	1.9	1
20	Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Veterinary Pathology, 2021, 58, 438-452.	1.7	30
21	Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H. MBio, 2021, 12, e0251021.	4.1	33
22	Impaired neutralizing antibody response to COVID-19 mRNA vaccines in cancer patients. Cell and Bioscience, 2021, 11, 197.	4.8	32
23	Rotavirus Interactions With Host Intestinal Epithelial Cells. Frontiers in Immunology, 2021, 12, 793841.	4.8	24
24	Human sapovirus propagation in human cell lines supplemented with bile acids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32078-32085.	7.1	22
25	Porcine sapoviruses: Pathogenesis, epidemiology, genetic diversity, and diagnosis. Virus Research, 2020, 286, 198025.	2.2	15
26	Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. Journal of Clinical Microbiology, 2020, 58, .	3.9	57
27	Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Research, 2020, 286, 198045.	2.2	200
28	Malnutrition Decreases Antibody Secreting Cell Numbers Induced by an Oral Attenuated Human Rotavirus Vaccine in a Human Infant Fecal Microbiota Transplanted Gnotobiotic Pig Model. Frontiers in Immunology, 2020, 11, 196.	4.8	15
29	Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens, 2020, 9, 130.	2.8	28
30	Porcine Deltacoronavirus Infection and Transmission in Poultry, United States1. Emerging Infectious Diseases, 2020, 26, 255-265.	4.3	99
31	Amino Acid Substitutions in Positions 385 and 393 of the Hydrophobic Region of VP4 May Be Associated with Rotavirus Attenuation and Cell Culture Adaptation. Viruses, 2020, 12, 408.	3.3	6
32	COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Research in Veterinary Science, 2020, 131, 21-23.	1.9	84
33	Comparative Sequence Analysis of Historic and Current Porcine Rotavirus C Strains and Their Pathogenesis in 3-Day-Old and 3-Week-Old Piglets. Frontiers in Microbiology, 2020, 11, 780.	3.5	7
34	Replicative capacity of porcine deltacoronavirus and porcine epidemic diarrhea virus in primary bovine mesenchymal cells. Veterinary Microbiology, 2020, 244, 108660.	1.9	11
35	Deltacoronavirus Evolution and Transmission: Current Scenario and Evolutionary Perspectives. Frontiers in Veterinary Science, 2020, 7, 626785.	2.2	19
36	Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. JCI Insight, 2020, 5, .	5.0	86

#	Article	IF	CITATIONS
37	Isolation and Tissue Culture Adaptation of Porcine Deltacoronavirus: A Case Study. Methods in Molecular Biology, 2020, 2203, 77-88.	0.9	3
38	Rotavirus C: prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. Veterinary Research, 2019, 50, 84.	3.0	26
39	Human Norovirus Histo-Blood Group Antigen (HBGA) Binding Sites Mediate the Virus Specific Interactions with Lettuce Carbohydrates. Viruses, 2019, 11, 833.	3.3	12
40	Epidemiology of Deltacoronaviruses (δ-CoV) and Gammacoronaviruses (γ-CoV) in Wild Birds in the United States. Viruses, 2019, 11, 897.	3.3	24
41	How the gut microbiome regulates host immune responses to viral vaccines. Current Opinion in Virology, 2019, 37, 16-25.	5.4	50
42	Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- <i>O</i> -Methyltransferase and the Endocytosis Signal of the Spike Protein. Journal of Virology, 2019, 93, .	3.4	35
43	Infectivity of GII.4 human norovirus does not differ between T-B-NK+ severe combined immunodeficiency (SCID) and non-SCID gnotobiotic pigs, implicating the role of NK cells in mediation of human norovirus infection. Virus Research, 2019, 267, 21-25.	2.2	6
44	Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Scientific Reports, 2019, 9, 3953.	3.3	40
45	Stage of Gestation at Porcine Epidemic Diarrhea Virus Infection of Pregnant Swine Impacts Maternal Immunity and Lactogenic Immune Protection of Neonatal Suckling Piglets. Frontiers in Immunology, 2019, 10, 727.	4.8	41
46	Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets. Veterinary Research, 2019, 50, 101.	3.0	21
47	Deletion of both the Tyrosine-Based Endocytosis Signal and the Endoplasmic Reticulum Retrieval Signal in the Cytoplasmic Tail of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Pigs. Journal of Virology, 2019, 93, .	3.4	40
48	Emerging and re-emerging coronaviruses in pigs. Current Opinion in Virology, 2019, 34, 39-49.	5.4	276
49	Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Veterinary Research, 2019, 15, 26.	1.9	30
50	Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and Î′-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples. Journal of Virological Methods, 2018, 256, 116-122.	2.1	41
51	Tissue Distribution and Visualization of Internalized Human Norovirus in Leafy Greens. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
52	Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research. Drug Discovery Today: Disease Models, 2018, 28, 95-103.	1.2	10
53	Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. Vaccine, 2018, 36, 6270-6281.	3.8	32
54	Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5135-E5143.	7.1	192

#	Article	IF	CITATIONS
55	Susceptibility of porcine IPEC-J2 intestinal epithelial cells to infection with porcine deltacoronavirus (PDCoV) and serum cytokine responses of gnotobiotic pigs to acute infection with IPEC-J2 cell culture-passaged PDCoV. Veterinary Microbiology, 2018, 221, 49-58.	1.9	56
56	Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterology, 2018, 18, 93.	2.0	53
57	Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host and Microbe, 2018, 24, 208-220.e8.	11.0	209
58	Attempts to grow human noroviruses, a sapovirus, and a bovine norovirus in vitro. PLoS ONE, 2018, 13, e0178157.	2.5	41
59	Immunohistochemical detection of the vomiting-inducing monoamine neurotransmitter serotonin and enterochromaffin cells in the intestines of conventional or gnotobiotic (Gn) pigs infected with porcine epidemic diarrhea virus (PEDV) and serum cytokine responses of Gn pigs to acute PEDV infection. Research in Veterinary Science, 2018, 119, 99-108.	1.9	31
60	Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage. Veterinary Microbiology, 2017, 201, 62-71.	1.9	44
61	Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs. MSphere, 2017, 2, .	2.9	37
62	Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets. Journal of Virology, 2017, 91, .	3.4	68
63	Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus. Archives of Virology, 2017, 162, 2357-2362.	2.1	102
64	Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. Vaccine Journal, 2017, 24, .	3.1	30
65	Antiviral effect of theaflavins against caliciviruses. Journal of Antibiotics, 2017, 70, 443-447.	2.0	25
66	Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus. Research in Veterinary Science, 2017, 110, 12-15.	1.9	34
67	Unraveling the Differences between Gram-Positive and Gram-Negative Probiotics in Modulating Protective Immunity to Enteric Infections. Frontiers in Immunology, 2017, 8, 334.	4.8	49
68	Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain. Veterinary Research, 2017, 48, 61.	3.0	20
69	Genetic Characterization and Classification of Human and Animal Sapoviruses. PLoS ONE, 2016, 11, e0156373.	2.5	71
70	Recognition of Histo-Blood Group Antigen-Like Carbohydrates in Lettuce by Human GII.4 Norovirus. Applied and Environmental Microbiology, 2016, 82, 2966-2974.	3.1	30
71	Tissue-specific mRNA expression profiles of porcine Toll-like receptors at different ages in germ-free and conventional pigs. Veterinary Immunology and Immunopathology, 2016, 171, 7-16.	1.2	11
72	Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Research, 2016, 226, 93-107.	2.2	137

#	Article	IF	CITATIONS
73	Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis. Virus Research, 2016, 226, 50-59.	2.2	148
74	<i>Escherichia coli</i> Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NKâ€cell responses. European Journal of Immunology, 2016, 46, 2426-2437.	2.9	39
75	Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22. Archives of Virology, 2016, 161, 3421-3434.	2.1	62
76	Effects of Escherichia coli Nissle 1917 and Ciprofloxacin on small intestinal epithelial cell mRNA expression in the neonatal piglet model of human rotavirus infection. Gut Pathogens, 2016, 8, 66.	3.4	16
77	Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Research, 2016, 226, 20-39.	2.2	193
78	Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Veterinary Immunology and Immunopathology, 2016, 172, 72-84.	1.2	124
79	Differential Effects of <i>Escherichia coli</i> Nissle and <i>Lactobacillus rhamnosus</i> Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. Journal of Immunology, 2016, 196, 1780-1789.	0.8	86
80	Mechanism of Cell Culture Adaptation of an Enteric Calicivirus, the Porcine Sapovirus Cowden Strain. Journal of Virology, 2016, 90, 1345-1358.	3.4	14
81	Characterization of a Pathogenic Full-Length cDNA Clone and Transmission Model for Porcine Epidemic Diarrhea Virus Strain PC22A. MBio, 2016, 7, e01451-15.	4.1	75
82	Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo. Veterinary Microbiology, 2016, 182, 57-63.	1.9	36
83	Comparative <i>In Vitro</i> and <i>In Vivo</i> Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8]. Journal of Virology, 2016, 90, 142-151.	3.4	19
84	Abiotic Stress and Phyllosphere Bacteria Influence the Survival of Human Norovirus and Its Surrogates on Preharvest Leafy Greens. Applied and Environmental Microbiology, 2016, 82, 352-363.	3.1	17
85	Postharvest Survival of Porcine Sapovirus, a Human Norovirus Surrogate, on Phytopathogen-Infected Leafy Greens. Journal of Food Protection, 2015, 78, 1472-1480.	1.7	8
86	Pathogenicity of 2 Porcine Deltacoronavirus Strains in Gnotobiotic Pigs. Emerging Infectious Diseases, 2015, 21, 650-654.	4.3	155
87	Feline Calicivirus, Murine Norovirus, Porcine Sapovirus, and Tulane Virus Survival on Postharvest Lettuce. Applied and Environmental Microbiology, 2015, 81, 5085-5092.	3.1	22
88	Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain. Veterinary Research, 2015, 46, 109.	3.0	49
89	Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection. Veterinary Research, 2015, 46, 134.	3.0	76
90	Antigenic Relationships among Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus Strains. Journal of Virology, 2015, 89, 3332-3342.	3.4	96

#	Article	IF	CITATIONS
91	Comprehensive Review of Human Sapoviruses. Clinical Microbiology Reviews, 2015, 28, 32-53.	13.6	271
92	Isolation and Characterization of Porcine Deltacoronavirus from Pigs with Diarrhea in the United States. Journal of Clinical Microbiology, 2015, 53, 1537-1548.	3.9	165
93	Multiplex real-time RT-PCR for the simultaneous detection and quantification of GI, GII and GIV noroviruses. Journal of Virological Methods, 2015, 223, 109-114.	2.1	19
94	Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs. Veterinary Microbiology, 2015, 178, 31-40.	1.9	101
95	Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Veterinary Journal, 2015, 204, 134-143.	1.7	359
96	Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus. Veterinary Microbiology, 2015, 177, 373-378.	1.9	51
97	Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs. Veterinary Immunology and Immunopathology, 2015, 168, 193-202.	1.2	94
98	Strategies for Design and Application of Enteric Viral Vaccines. Annual Review of Animal Biosciences, 2015, 3, 375-395.	7.4	94
99	In vivo gut transcriptome responses to <i>Lactobacillus rhamnosus</i> GG and <i>Lactobacillus acidophilus</i> in neonatal gnotobiotic piglets. Gut Microbes, 2014, 5, 152-164.	9.8	25
100	Distinct Characteristics and Complex Evolution of PEDV Strains, North America, May 2013–February 2014. Emerging Infectious Diseases, 2014, 20, 1620-8.	4.3	268
101	Pathology of US Porcine Epidemic Diarrhea Virus Strain PC21A in Gnotobiotic Pigs. Emerging Infectious Diseases, 2014, 20, 668-671.	4.3	177
102	Pathogenesis of GIII.2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. Veterinary Microbiology, 2014, 168, 202-207.	1.9	27
103	Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq®) in a neonatal gnotobiotic pig model. Vaccine, 2014, 32, 816-824.	3.8	44
104	Retrospective serosurveillance of bovine norovirus (GIII.2) and nebovirus in cattle from selected feedlots and a veal calf farm in 1999 to 2001 in the United States. Archives of Virology, 2014, 159, 83-90.	2.1	11
105	Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. Science of the Total Environment, 2014, 472, 757-766.	8.0	30
106	Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Veterinary Microbiology, 2014, 173, 258-269.	1.9	150
107	Integrating Bacterial and Viral Water Quality Assessment to Predict Swimming-Associated Illness at a Freshwater Beach: A Cohort Study. PLoS ONE, 2014, 9, e112029.	2.5	12
108	Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine. Archives of Virology, 2013, 158, 1583-1588.	2.1	31

#	Article	IF	CITATIONS
109	Probiotics and colostrum/milk differentially affect neonatal humoral immune responses to oral rotavirus vaccine. Vaccine, 2013, 31, 1916-1923.	3.8	31
110	Prenatally Acquired Vitamin A Deficiency Alters Innate Immune Responses to Human Rotavirus in a Gnotobiotic Pig Model. Journal of Immunology, 2013, 190, 4742-4753.	0.8	56
111	Divergent Immunomodulating Effects of Probiotics on T Cell Responses to Oral Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Infection in a Neonatal Gnotobiotic Piglet Disease Model. Journal of Immunology, 2013, 191, 2446-2456.	0.8	81
112	Lactobacilli and Bifidobacteria Promote Immune Homeostasis by Modulating Innate Immune Responses to Human Rotavirus in Neonatal Gnotobiotic Pigs. PLoS ONE, 2013, 8, e76962.	2.5	92
113	Vitamin A Deficiency Impairs Adaptive B and T Cell Responses to a Prototype Monovalent Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Challenge in a Gnotobiotic Piglet Model. PLoS ONE, 2013, 8, e82966.	2.5	35
114	The Effects of Simvastatin or Interferon-α on Infectivity of Human Norovirus Using a Gnotobiotic Pig Model for the Study of Antivirals. PLoS ONE, 2012, 7, e41619.	2.5	65
115	Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis. Journal of General Virology, 2011, 92, 1369-1379.	2.9	53
116	Characterization of Emerging GII.g/GII.12 Noroviruses from a Gastroenteritis Outbreak in the United States in 2010. Journal of Clinical Microbiology, 2011, 49, 3234-3244.	3.9	56
117	Characterization and Prevalence of a New Porcine Calicivirus in Swine, United States. Emerging Infectious Diseases, 2011, 17, 1103-1106.	4.3	11
118	Bovine Respiratory Coronavirus. Veterinary Clinics of North America - Food Animal Practice, 2010, 26, 349-364.	1.2	163
119	Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: implications for respiratory viral co-infections. Journal of General Virology, 2009, 90, 2713-2723.	2.9	93
120	Winter Dysentery. , 2009, , 112-114.		3
121	Virus-specific intestinal IFN-γ producing T cell responses induced by human rotavirus infection and vaccines are correlated with protection against rotavirus diarrhea in gnotobiotic pigs. Vaccine, 2008, 26, 3322-3331.	3.8	65
122	Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine, 2008, 26, 3655-3661.	3.8	104
123	Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Veterinary Immunology and Immunopathology, 2008, 121, 222-231.	1.2	65
124	Bovine-Like Coronaviruses Isolated from Four Species of Captive Wild Ruminants Are Homologous to Bovine Coronaviruses, Based on Complete Genomic Sequences. Journal of Virology, 2008, 82, 12422-12431.	3.4	88
125	Cytokine Responses in Porcine Respiratory Coronavirus-Infected Pigs Treated with Corticosteroids as a Model for Severe Acute Respiratory Syndrome. Journal of Virology, 2008, 82, 4420-4428.	3.4	52
126	Detection of Group 2a Coronaviruses with Emphasis on Bovine and Wild Ruminant Strains. Methods in Molecular Biology, 2008, 454, 43-59.	0.9	20

#	Article	IF	CITATIONS
127	Biologic, Antigenic, and Full-Length Genomic Characterization of a Bovine-Like Coronavirus Isolated from a Giraffe. Journal of Virology, 2007, 81, 4981-4990.	3.4	94
128	Altered Pathogenesis of Porcine Respiratory Coronavirus in Pigs due to Immunosuppressive Effects of Dexamethasone: Implications for Corticosteroid Use in Treatment of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2007, 81, 13681-13693.	3.4	61
129	Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. Virology, 2007, 363, 1-10.	2.4	58
130	Immune responses to bovine norovirus-like particles with various adjuvants and analysis of protection in gnotobiotic calves. Vaccine, 2006, 24, 317-326.	3.8	25
131	Cross-Protection against a Human Enteric Coronavirus and a Virulent Bovine Enteric Coronavirus in Gnotobiotic Calves. Journal of Virology, 2006, 80, 12350-12356.	3.4	37
132	Pathogenesis of a Genogroup II Human Norovirus in Gnotobiotic Pigs. Journal of Virology, 2006, 80, 10372-10381.	3.4	248
133	Magnitude of Serum and Intestinal Antibody Responses Induced by Sequential Replicating and Nonreplicating Rotavirus Vaccines in Gnotobiotic Pigs and Correlation with Protection. Vaccine Journal, 2004, 11, 12-20.	2.6	48
134	Genetic Recombination between Two Genotypes of Genogroup III Bovine Noroviruses (BoNVs) and Capsid Sequence Diversity among BoNVs and Nebraska-Like Bovine Enteric Caliciviruses. Journal of Clinical Microbiology, 2004, 42, 5214-5224.	3.9	62
135	Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Research, 2002, 84, 101-109.	2.2	72
136	Short-term immunoglobulin A B-cell memory resides in intestinal lymphoid tissues but not in bone marrow of gnotobiotic pigs inoculated with Wa human rotavirus. Immunology, 2001, 103, 188-198.	4.4	36
137	Expression and Self-Assembly in Baculovirus of Porcine Enteric Calicivirus Capsids into Virus-Like Particles and Their Use in an Enzyme-Linked Immunosorbent Assay for Antibody Detection in Swine. Journal of Clinical Microbiology, 2001, 39, 1487-1493.	3.9	42
138	Detection and isolation of coronavirus from feces of three herds of feedlot cattle during outbreaks of winter dysentery-like disease. Journal of the American Veterinary Medical Association, 2000, 217, 1191-1194.	0.5	42
139	Development of a Reverse Transcription-Nested Polymerase Chain Reaction Assay for Differential Diagnosis of Transmissible Gastroenteritis Virus and Porcine Respiratory Coronavirus from Feces and Nasal Swabs of Infected Pigs. Journal of Veterinary Diagnostic Investigation, 2000, 12, 385-388.	1.1	42
140	Evaluation of the Baculovirus-Expressed S Glycoprotein of Transmissible Gastroenteritis Virus (TGEV) as Antigen in a Competition ELISA to Differentiate Porcine Respiratory Coronavirus from TGEV Antibodies in Pigs. Journal of Veterinary Diagnostic Investigation, 1999, 11, 205-214.	1.1	18
141	Enteric Viral Infections of Pigs and Strategies for Induction of Mucosal Immunity. Advances in Veterinary Medicine, 1999, 41, 429-446.	0.6	40
142	Comparative Pathogenesis of Enteric Viral Infections of Swine. Advances in Experimental Medicine and Biology, 1999, 473, 47-59.	1.6	31
143	Immunohistochemistry of Transmissible Gastroenteritis Virus Antigens in Fixed Paraffin-Embedded Tissues. Journal of Veterinary Diagnostic Investigation, 1996, 8, 161-167.	1.1	18
144	Evaluation of Two Antigen-Capture ELISAs using Polyclonal or Monoclonal Antibodies for the Detection of Bovine Coronavirus. Journal of Veterinary Diagnostic Investigation, 1996, 8, 99-105.	1.1	40

#	Article	IF	CITATIONS
145	Antibody Responses in Serum, Colostrum, and Milk of Swine After Infection or Vaccination with Transmissible Gastroenteritis Virus. Infection and Immunity, 1972, 6, 289-301.	2.2	201
146	Isolation of Porcine Immunoglobulins and Determination of the Immunoglobulin Classes of Transmissible Gastroenteritis Viral Antibodies. Infection and Immunity, 1972, 6, 600-609.	2.2	90
147	Torovirus Pathogenesis and Immune Responses. , 0, , 351-359.		3
148	Coronaviruses of Domestic Livestock and Poultry: Interspecies Transmission, Pathogenesis, and Immunity. , 0, , 279-298.		10
149	VACCINES FOR COVID-19: PERSPECTIVES, PROSPECTS, AND CHALLENGES BASED ON CANDIDATE SARS, MERS, AND ANIMAL CORONAVIRUS VACCINES. European Medical Journal (Chelmsford, England), 0, , .	3.0	40