Gilles Horowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3938354/publications.pdf

Version: 2024-02-01

194 papers 17,927 citations

68 h-index 131 g-index

199 all docs 199 docs citations

times ranked

199

10451 citing authors

#	Article	IF	CITATIONS
1	Effect of Gaussian Disorder on Power-Law Contact Resistance and Mobility in Organic Field-Effect Transistors. IEEE Transactions on Electron Devices, 2021, 68, 307-310.	3.0	4
2	Validity of the effective injection barrier in organic field-effect transistors. Journal Physics D: Applied Physics, 2021, 54, 095109.	2.8	3
3	Parametrization of the Gaussian Disorder Model to Account for the High Carrier Mobility in Disordered Organic Transistors. Physical Review Applied, 2021, 15, .	3.8	17
4	(Invited) Theoretical Frequency Limit of Organic Rectifier Diodes. ECS Meeting Abstracts, 2021, MA2021-01, 1061-1061.	0.0	0
5	Advances in Compact Modeling of Organic Field-Effect Transistors. IEEE Journal of the Electron Devices Society, 2020, 8, 1404-1415.	2.1	23
6	Compact modelling and SPICE simulation for three-dimensional, inkjet-printed organic transistors, inverters and ring oscillators. Journal Physics D: Applied Physics, 2019, 52, 444005.	2.8	17
7	Toward a Fully Analytical Contact Resistance Expression in Organic Transistors. Materials, 2019, 12, 1169.	2.9	15
8	A Compact Model and Parameter Extraction Method for a Staggered OFET With Power-Law Contact Resistance and Mobility. IEEE Transactions on Electron Devices, 2019, 66, 4894-4900.	3.0	30
9	Numerical Modeling of an Organic Electrochemical Transistor. Biosensors, 2018, 8, 103.	4.7	18
10	Lumped-element model of plasmonic solar cells. Solid-State Electronics, 2018, 147, 39-43.	1.4	3
11	Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors. Scientific Reports, 2017, 7, 46365.	3.3	27
12	A TIPS-TPDO-tetraCN-Based <i>n</i> -Type Organic Field-Effect Transistor with a Cross-linked PMMA Polymer Gate Dielectric. ACS Applied Materials & Dielectric. ACS Applied Materials & Dielectric Representation of the PMMA Polymer Gate Dielectric Representation of the PMMA Polymer Representation of the PMM	8.0	54
13	Simplified numerical simulation of organic photovoltaic devices. Journal of Computational Electronics, 2016, 15, 1095-1102.	2.5	8
14	Universal Compact Model for Organic Solar Cell. IEEE Transactions on Electron Devices, 2016, 63, 4053-4059.	3.0	5
15	Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor. Journal of Nanoscience and Nanotechnology, 2016, 16, 2779-2782.	0.9	O
16	Injection barrier at metal/organic semiconductor junctions with a Gaussian density-of-states. Journal Physics D: Applied Physics, 2015, 48, 395103.	2.8	32
17	Validity of the concept of band edge in organic semiconductors. Journal of Applied Physics, 2015, 118, .	2.5	49
18	Fundamental insights into the threshold characteristics of organic field-effect transistors. Journal Physics D: Applied Physics, 2015, 48, 035106.	2.8	20

#	Article	IF	CITATIONS
19	Equivalent Circuit Modeling for a High-Performance Large-Area Organic Photovoltaic Module. IEEE Journal of Photovoltaics, 2015, 5, 1100-1105.	2.5	7
20	Decoupling the Effects of Selfâ€Assembled Monolayers on Gold, Silver, and Copper Organic Transistor Contacts. Advanced Materials Interfaces, 2015, 2, 1400384.	3.7	75
21	Strongly Correlated Alignment of Fluorinated 5,11â∈Bis(triethylgermylethynyl)anthradithiophene Crystallites in Solutionâ∈Processed Fieldâ∈Effect Transistors. ChemPhysChem, 2014, 15, 2913-2916.	2.1	16
22	Impedance spectroscopy on copper phthalocyanine diodes with surface-induced molecular orientation. Organic Electronics, 2014, 15, 1724-1730.	2.6	20
23	Compact DC Modeling of Organic Field-Effect Transistors: Review and Perspectives. IEEE Transactions on Electron Devices, 2014, 61, 278-287.	3.0	95
24	Highly enhanced charge injection and bulk transport in organic gapâ€type diodes via oneâ€pot treatment process: experiment and simulation. Micro and Nano Letters, 2014, 9, 887-890.	1.3	0
25	Organic Diodes with Highly Improved Charge Injection and Transport via One-Pot Treatment Process. Science of Advanced Materials, 2014, 6, 2483-2486.	0.7	1
26	Effects of the solvent polarity of a polymeric insulator on field-effect mobility in an organic thin-film transistor. Solid-State Electronics, 2013, 81, 140-143.	1.4	10
27	Charge Distribution and Contact Resistance Model for Coplanar Organic Field-Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 280-287.	3.0	78
28	A Compact Model for Organic Field-Effect Transistors With Improved Output Asymptotic Behaviors. IEEE Transactions on Electron Devices, 2013, 60, 1136-1141.	3.0	85
29	Large enhancement of hole injection in pentacene by modification of gold with conjugated self-assembled monolayers. Organic Electronics, 2013, 14, 2108-2113.	2.6	21
30	Copolythiophene-based water-gated organic field-effect transistors for biosensing. Journal of Materials Chemistry B, 2013, 1, 2090.	5.8	41
31	Rod–coil and all-conjugated block copolymers for photovoltaic applications. Progress in Polymer Science, 2013, 38, 791-844.	24.7	125
32	Templating and Charge Injection from Copper Electrodes into Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3716-3721.	8.0	29
33	Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8394-8399.	7.1	94
34	Amphiphilic conjugated block copolymers for efficient bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 4511.	6.7	20
35	Persistent photoexcitation effect on the poly(3-hexylthiophene) film: Impedance measurement and modeling. Synthetic Metals, 2012, 162, 460-465.	3.9	30
36	Effect of self assembled monolayers on charge carrier photogeneration in sexithiophene based diodes. Synthetic Metals, 2012, 162, 1741-1745.	3.9	5

3

#	Article	IF	Citations
37	DNA detection with a water-gated organic field-effect transistor. Organic Electronics, 2012, 13, 1-6.	2.6	127
38	Phospholipid film in electrolyte-gated organic field-effect transistors. Organic Electronics, 2012, 13, 638-644.	2.6	54
39	An effective method to minimize the leakage current in organic thin-film transistors by using blends of various molecular weights. Organic Electronics, 2012, 13, 1255-1260.	2.6	15
40	Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Analytical and Bioanalytical Chemistry, 2012, 402, 1813-1826.	3.7	247
41	Fundamental Benefits of the Staggered Geometry for Organic Field-Effect Transistors. IEEE Electron Device Letters, 2011, 32, 1302-1304.	3.9	77
42	Capacitive behavior of pentacene-based diodes: Quasistatic dielectric constant and dielectric strength. Journal of Applied Physics, 2011, 109, .	2.5	94
43	Influence of Substrate Surface Chemistry on the Performance of Top-Gate Organic Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 9968-9971.	13.7	50
44	Use of poly(3-hexylthiophene)/poly(methyl methacrylate) (P3HT/PMMA) blends to improve the performance of water-gated organic field-effect transistors. Organic Electronics, 2011, 12, 1253-1257.	2.6	56
45	Charge carrier injection and transport associated with thermally generated cracks in a 6,13-bis(triisopropylsilylethynyl) pentacene thin-film transistor. Solid-State Electronics, 2011, 63, 163-166.	1.4	25
46	Modeling the low-voltage regime of organic diodes: Origin of the ideality factor. Journal of Applied Physics, $2011,110,$.	2.5	49
47	Organic Metalâ€Semiconductor Fieldâ€Effect Transistor (OMESFET) Fabricated on a Rubrene Single Crystal. Advanced Materials, 2010, 22, 424-428.	21.0	30
48	A Waterâ€Gate Organic Fieldâ€Effect Transistor. Advanced Materials, 2010, 22, 2565-2569.	21.0	265
49	Modification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors. Organic Electronics, 2010, 11, 227-237.	2.6	108
50	Photogeneration process in pristine sexithiophene based photovoltaic cells. Organic Electronics, 2010, 11, 1439-1444.	2.6	5
51	Influence of the semi-conductor layer thickness on electrical performance of staggered n- and p-channel organic thin-film transistors. Organic Electronics, 2010, 11, 291-298.	2.6	54
52	Surface engineering for high performance organic electronic devices: the chemical approach. Journal of Materials Chemistry, 2010, 20, 2513.	6.7	133
53	Modeling of mobility in organic thin-film transistor based octithiophene (8T). Synthetic Metals, 2010, 160, 1787-1792.	3.9	22
54	44.1: Introducing a Two Stage Fully Organic AMOLED Display; from Design to Fabrication. Digest of Technical Papers SID International Symposium, 2009, 40, 653-655.	0.3	0

#	Article	IF	Citations
55	Highâ∈Performance Organic Fieldâ∈Effect Transistors. Advanced Materials, 2009, 21, 1473-1486.	21.0	641
56	Subthreshold regime in rubrene single-crystal organic transistors. Applied Physics A: Materials Science and Processing, 2009, 95, 193-201.	2.3	24
57	Solution processible naphthalene and perylene bisimides: Synthesis, electrochemical characterization and application to organic field effect transistors (OFETs) fabrication. Synthetic Metals, 2009, 159, 1478-1485.	3.9	75
58	Contact resistance and threshold voltage extraction in n-channel organic thin film transistors on plastic substrates. Journal of Applied Physics, 2009, 105, .	2.5	50
59	Interfaces in Organic Field-Effect Transistors. Advances in Polymer Science, 2009, , 113-153.	0.8	22
60	A SPICE-like DC Model for Organic Thin-Film Transistors. Journal of the Korean Physical Society, 2009, 54, 523-526.	0.7	16
61	Improving charge injection in organic thin-film transistors with thiol-based self-assembled monolayers. Organic Electronics, 2008, 9, 419-424.	2.6	112
62	Organic thin-film transistors modeling; simulation and design of a fully organic AMOLED pixel circuit. , $2008, , .$		3
63	Self-Assembly of an Octanethiol Monolayer on a Gold-Stepped Surface. Langmuir, 2008, 24, 2042-2050.	3.5	14
64	Low-Operating-Voltage Organic Transistors Made of Bifunctional Self-Assembled Monolayers. Advanced Functional Materials, 2007, 17, 597-604.	14.9	90
65	Organic inverter circuits employing ambipolar pentacene field-effect transistors. Applied Physics Letters, 2006, 89, 033512.	3.3	93
66	Modification of Indium Tin Oxide Films by Alkanethiol and Fatty Acid Self-Assembled Monolayers:Â A Comparative Study. Langmuir, 2006, 22, 3118-3124.	3.5	42
67	Organic Transistors. , 2006, , 1-32.		10
68	Tuning light emission colour of AlQ3 through oligothiophene substituents., 2006,,.		1
69	Field-induced mobility degradation in pentacene thin-film transistors. Organic Electronics, 2006, 7, 528-536.	2.6	128
70	On the crucial role of the insulator-semiconductor interface in organic thin-film transistors. , 2006, , .		4
71	High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric. Advanced Materials, 2005, 17, 2315-2320.	21.0	215
72	Extracting Parameters from the Current-Voltage Characteristics of Organic Field-Effect Transistors. Advanced Functional Materials, 2004, 14, 1069-1074.	14.9	170

#	Article	IF	CITATIONS
73	Growth of polyalkylthiophene films by matrix assisted pulsed laser evaporation. Organic Electronics, 2004, 5, 29-34.	2.6	54
74	Organic thin film transistors: From theory to real devices. Journal of Materials Research, 2004, 19, 1946-1962.	2.6	779
75	Structure–performance relationship in pentacene/Al2O3 thin-film transistors. Synthetic Metals, 2004, 146, 279-282.	3.9	64
76	Tunneling Current in Polycrystalline Organic Thin-Film Transistors. Advanced Functional Materials, 2003, 13, 53-60.	14.9	135
77	HREELS Study of Self-Assembled Monolayers of Alkylthiols Functionalized with Oligothiophene Moieties:Â Extreme Surface Analysis and Evidence for Intermolecular Interactions. Langmuir, 2003, 19, 2649-2657.	3.5	14
78	Tunnel current in organic field-effect transistors. Synthetic Metals, 2003, 138, 101-105.	3.9	23
79	Effect of an external electric field on the charge transport parameters in organic molecular semiconductors. Journal of Chemical Physics, 2003, 119, 12563-12568.	3.0	49
80	New advances on the characterisation of polymer surfaces by HREELS. Macromolecular Symposia, 2002, 184, 49-66.	0.7	0
81	Oligothiophene films under electron irradiation: electron mobility and contact potentials. Materials Science and Engineering C, 2002, 22, 367-372.	7.3	17
82	Charge transport in polycrystalline oligothiophene thin film transistors. Synthetic Metals, 2001, 121, 1349-1350.	3.9	7
83	Near gap region analysis in HREELS spectra of \hat{l}_{\pm} -oligothiophene thin films. Synthetic Metals, 2001, 121, 1437-1438.	3.9	0
84	Grain size dependent mobility in polycrystalline organic field-effect transistors. Synthetic Metals, 2001, 122, 185-189.	3.9	204
85	Directional dispersion of exciton levels in \hat{l} ±-oligothiophenes. Synthetic Metals, 2001, 119, 589-590.	3.9	11
86	Charge Transport in Polycrystalline Organic Field-Effect Transistors. Solid State Phenomena, 2001, 80-81, 3-14.	0.3	2
87	Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator. Applied Physics Letters, 2001, 79, 659-661.	3.3	75
88	Mobility in Polycrystalline Oligothiophene Field-Effect Transistors Dependent on Grain Size. Advanced Materials, 2000, 12, 1046-1050.	21.0	367
89	Experimental determination of excitonic levels in \hat{l} ±-oligothiophenes. Journal of Chemical Physics, 2000, 113, 385-391.	3.0	81
90	Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. Journal of Applied Physics, 2000, 87, 4456-4463.	2.5	551

#	Article	IF	CITATIONS
91	Photoconductivity of sexithiophene single crystals. Physical Review B, 1999, 59, 10651-10656.	3.2	25
92	Surface analysis of oligothiophene films using HREELS: molecular orientation effects. Advanced Materials for Optics and Electronics, 1999, 9, 211-218.	0.4	17
93	Structure-Dependent Fluorescence in Sexithiophene Single Crystals. Advanced Materials, 1999, 11, 234-238.	21.0	37
94	Field-effect transistors based on short organic molecules. Journal of Materials Chemistry, 1999, 9, 2021-2026.	6.7	125
95	Theory of the organic field-effect transistor. Synthetic Metals, 1999, 101, 401-404.	3.9	126
96	Optical characterisation of 6t and 4t single crystals by ellipsometry; anisotropy and crystalline structure. Synthetic Metals, 1999, 101, 536-537.	3.9	7
97	Hreels studies on the electronic structure of oligothiophene films. Synthetic Metals, 1999, 101, 606-607.	3.9	7
98	Improved electroluminescence from oligothiophenes. Synthetic Metals, 1999, 102, 1071-1072.	3.9	3
99	Gate voltage dependent mobility of oligothiophene field-effect transistors. Journal of Applied Physics, 1999, 85, 3202-3206.	2.5	287
100	Organic Field-Effect Transistors. Advanced Materials, 1998, 10, 365-377.	21.0	2,168
100	Organic Field-Effect Transistors. Advanced Materials, 1998, 10, 365-377. Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials, 1998, 10, 382-385.	21.0	2,168 157
	Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials,		·
101	Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials, 1998, 10, 382-385. The Concept of "Threshold Voltage―in Organic Field-Effect Transistors. Advanced Materials, 1998, 10,	21.0	157
101	Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials, 1998, 10, 382-385. The Concept of "Threshold Voltage―in Organic Field-Effect Transistors. Advanced Materials, 1998, 10, 923-927. Photoinduced spontaneous and stimulated emission in sexithiophene single crystals. Optical	21.0	157 258
101 102 103	Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials, 1998, 10, 382-385. The Concept of "Threshold Voltage―in Organic Field-Effect Transistors. Advanced Materials, 1998, 10, 923-927. Photoinduced spontaneous and stimulated emission in sexithiophene single crystals. Optical Materials, 1998, 9, 46-52. Disorder influenced optical properties of α-sexithiophene single crystals and thin evaporated films.	21.0 21.0 3.6	157 258 60
101 102 103	Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials, 1998, 10, 382-385. The Concept of "Threshold Voltage―in Organic Field-Effect Transistors. Advanced Materials, 1998, 10, 923-927. Photoinduced spontaneous and stimulated emission in sexithiophene single crystals. Optical Materials, 1998, 9, 46-52. Disorder influenced optical properties of α-sexithiophene single crystals and thin evaporated films. Chemical Physics, 1998, 227, 49-56. Dihexylquaterthiophene, A Two-Dimensional Liquid Crystal-like Organic Semiconductor with High	21.0 21.0 3.6	157 258 60 54
101 102 103 104	Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits. Advanced Materials, 1998, 10, 382-385. The Concept of "Threshold Voltage―in Organic Field-Effect Transistors. Advanced Materials, 1998, 10, 923-927. Photoinduced spontaneous and stimulated emission in sexithiophene single crystals. Optical Materials, 1998, 9, 46-52. Disorder influenced optical properties of α-sexithiophene single crystals and thin evaporated films. Chemical Physics, 1998, 227, 49-56. Dihexylquaterthiophene, A Two-Dimensional Liquid Crystal-like Organic Semiconductor with High Transport Propertiesâ€. Chemistry of Materials, 1998, 10, 3334-3339. The four-level stimulated emission in sexithiophene single crystals. Applied Physics Letters, 1998, 72,	21.0 21.0 3.6 1.9	157 258 60 54 206

#	Article	IF	Citations
109	Vers la diode laser organique ?. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1998, 95, 1325-1330.	0.2	1
110	Tunneling at Organic/Metal Interfaces in Oligomer-Based Thin-Film Transistors. MRS Bulletin, 1997, 22, 52-56.	3.5	17
111	Stimulated emission in sexithiophene single crystals. , 1997, 3145, 340.		0
112	Spectroscopic Evidence for a Substrate Dependent Orientation of Sexithiophene Thin Films Deposited onto Oriented PTFE. Journal of Physical Chemistry B, 1997, 101, 8204-8211.	2.6	32
113	Role of mesoscopic molecular organization in organic-based thin film transistors. Supramolecular Science, 1997, 4, 155-162.	0.7	19
114	Substrate Dependent Orientation and Structure of Sexithiophene Thin Films. Synthetic Metals, 1997, 84, 605-606.	3.9	25
115	Structural, spectroscopic and device characteristics of octithiophene. Synthetic Metals, 1997, 85, 1309-1312.	3.9	19
116	Optoelectronic properties of sexithiophene single crystals. Synthetic Metals, 1997, 90, 187-192.	3.9	26
117	Femtosecond dynamics of excited states in sexithiophene thin films. Chemical Physics, 1997, 215, 131-138.	1.9	8
118	Tuning of the Electronic and Optical Properties of Oligothiophenes via Cyano Substitution:Â A Joint Experimental and Theoretical Study. Journal of Physical Chemistry B, 1997, 101, 4553-4558.	2.6	68
119	Thermal and optical characterization of high purity ?-octithiophenk. Advanced Materials, 1997, 9, 75-80.	21.0	54
120	Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene. Advanced Materials, 1997, 9, 389-391.	21.0	126
121	Organic transistors using α-octithiophene and α, ω-dihexyl-α-octithiophene: Influence of oligomer length versus molecular ordering on mobility. Advanced Materials, 1997, 9, 557-561.	21.0	76
122	Molecular order in organic-based field-effect transistors. Synthetic Metals, 1996, 81, 163-171.	3.9	78
123	Field-effect transistor made with a sexithiophene single crystal. Advanced Materials, 1996, 8, 52-54.	21.0	224
124	Origin of the "ohmic―current in organic field-effect transistors. Advanced Materials, 1996, 8, 177-179.	21.0	25
125	Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative. Advanced Materials, 1996, 8, 242-245.	21.0	273
126	Growth and structural characterization of the Quasi-2D single crystal of α-octithiophene. Advanced Materials, 1996, 8, 500-504.	21.0	129

#	Article	IF	CITATIONS
127	Cyclic voltammetry and differential cyclic voltabsorptometry of soluble oligothiophenes: evidence for a four-fold charged π-dimer in duodecithiophene. Journal of Electroanalytical Chemistry, 1995, 399, 97-103.	3.8	63
128	Growth and Characterization of Sexithiophene Single Crystals. Chemistry of Materials, 1995, 7, 1337-1341.	6.7	542
129	Temperature Dependence of the Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps. Journal De Physique III, 1995, 5, 355-371.	0.3	156
130	Orientation et structure de films de sexithiophÃ"ne (6T) déposés sur couches de PTFE orientées par friction. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92, 963-966.	0.2	8
131	Étude de l'orientation et de la structure de films de sexithiophène (6T) déposés sur les surfaces de SiO ₂ et de SiH/Si. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92, 967-970.	0.2	3
132	Control of the mesoscopic organization of conjugated thiophene oligomers, induced by self-assembly properties. Electrochimica Acta, 1994, 39, 1339-1344.	5.2	13
133	Crystal structure of $\hat{l}\pm$, \hat{l} %-bis(triisopropylsilyl)-sexithiophene: Unusual conjugated chain distortion induced by interchain steric effects. Advanced Materials, 1994, 6, 660-663.	21.0	62
134	Two-layer light-emitting diodes based on sexithiophene and derivatives. Advanced Materials, 1994, 6, 752-755.	21.0	120
135	ESR and optical spectroscopy evidence for a chain-length dependence of the charged states of thiophene oligomers. Extrapolation to polythiophene. Synthetic Metals, 1994, 62, 245-252.	3.9	96
136	Transient electroluminescence of monolayer and bilayer sexithiophene diodes. Synthetic Metals, 1994, 67, 197-200.	3.9	31
137	Structural control of the optical properties of thin films of oligothiophenes. Synthetic Metals, 1994, 67, 277-280.	3.9	20
138	Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films. Chemistry of Materials, 1994, 6, 1809-1815.	6.7	282
139	Control of the Mesoscopic Organization of Conjugated Thiophene Oligomers, Induced by Self-Assembly Properties., 1994,, 263-271.		1
140	X-ray determination of the crystal structure and orientation of vacuum evaporated sexithiophene films. Advanced Materials, 1993, 5, 461-464.	21.0	141
141	Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers. Journal of the American Chemical Society, 1993, 115, 8716-8721.	13.7	749
142	Structure effect on transport of charge carriers in conjugated oligomers. Synthetic Metals, 1993, 57, 4747-4754.	3.9	33
143	All-organic field-effect transistors made of π-conjugated oligomers and polymeric insulators. Synthetic Metals, 1993, 54, 435-445.	3.9	125
144	Structure Effects on Transport of Charge Carriers in Conjugated Oligomers. Molecular Crystals and Liquid Crystals, 1993, 228, 81-86.	0.3	4

#	Article	IF	CITATIONS
145	Extended Oligothiophenes : New Materials for Molecular Electronics. Molecular Crystals and Liquid Crystals, 1992, 217, 193-196.	0.3	5
146	Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors. Synthetic Metals, 1992, 51, 419-424.	3.9	106
147	Low temperature optical absorption of polycrystalline thin films of α-quaterthiophene, α-sexithiophene and α-octithiophene, three model oligomers of polythiophene. Synthetic Metals, 1992, 48, 167-179.	3.9	105
148	Influence of the molecular structure on the refractive index of semiconducting diâ€Î²â€alkylated sexithiophenes. Journal of Applied Physics, 1992, 72, 4873-4876.	2.5	13
149	From oligomers to polymer. An insight into the electrochemical doping—dedoping of polythiophene from electrochemical data on thiophene oligomers. Journal of Electroanalytical Chemistry, 1992, 335, 123-134.	3.8	28
150	Electrochemical coupling of dialkylated sexithiophene. Advanced Materials, 1992, 4, 107-110.	21.0	93
151	Synthesis and characterization of a tetra-alkylated alpha-conjugated duodecithiophene. Advanced Materials, 1992, 4, 490-494.	21.0	94
152	Transistors à effet de champ à base d'oligomères organiques conjugués. Réalisation, modélisation et comparaison avec les semiconducteurs inorganiques. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1992, 89, 1037-1044.	0.2	1
153	Influence de la nature de l'isolant sur les performances des transistors à effet de champ à base de sexithiényle alpha-conjugué. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1992, 89, 1085-1090.	0.2	3
154	Augmentation de la mobilité des porteurs de charge dans des films minces de sexithiophène par inclusion électrochimique d'ions métalliques. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1992, 89, 1117-1123.	0.2	O
155	An analytical model for organicâ€based thinâ€film transistors. Journal of Applied Physics, 1991, 70, 469-475.	2.5	251
156	Preparation of charge-transfer complexes based on thiophene and paraphenylene oligomers as electron donors. Synthetic Metals, 1991, 42, 2319-2322.	3.9	10
157	Generation of stabilized polarons and bipolarons on extended model thiophene oligomers. Synthetic Metals, 1991, 41, 463-469.	3.9	62
158	Thin-film transistors based on alpha-conjugated oligomers. Synthetic Metals, 1991, 41, 1127-1130.	3.9	76
159	Structural basis for high carrier mobility in conjugated oligomers. Synthetic Metals, 1991, 45, 163-171.	3.9	129
160	Large enhancement of the carrier mobility in semiconducting ?-sexithienylene thin films by pulsed electrochemical inclusion of metal. Advanced Materials, 1991, 3, 150-153.	21.0	40
161	Organic-based field-effect transistors: Critical analysis of the semiconducting characteristics of organic materials. Molecular Engineering, 1991, 1, 131-139.	0.2	15
162	Organic Semiconductors for new electronic devices. Advanced Materials, 1990, 2, 287-292.	21.0	120

#	Article	IF	CITATIONS
163	An all-organic "soft" thin film transistor with very high carrier mobility. Advanced Materials, 1990, 2, 592-594.	21.0	552
164	Evidence for a linear low-voltage space-charge-limited current in organic thin films. Film thickness and temperature dependence in alpha-conjugated sexithienyl. Journal De Physique, 1990, 51, 1489-1499.	1.8	36
165	Allâ€organic thinâ€film transistors made of alphaâ€sexithienyl semiconducting and various polymeric insulating layers. Applied Physics Letters, 1990, 57, 2013-2015.	3.3	171
166	Stoichiometric control of the successive generation of the radical cation and dication of extended \hat{l} ±-conjugated oligothiophenes: a quantitative model for doped polythiophene. Synthetic Metals, 1990, 39, 243-259.	3.9	287
167	Polaron and bipolaron formation on isolated model thiophene oligomers in solution. Synthetic Metals, 1990, 39, 125-131.	3.9	103
168	The oligothiopheneâ€based fieldâ€effect transistor: How it works and how to improve it. Journal of Applied Physics, 1990, 67, 528-532.	2.5	249
169	A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Communications, 1989, 72, 381-384.	1.9	476
170	Alpha-sexithienyl: A p- and n-type dopable molecular semiconductor. Solid State Communications, 1989, 70, 385-388.	1.9	43
171	Electrochemical synthesis of alpha-conjugated octi- and decithienyl oligomers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 267, 339-342.	0.1	70
172	Photoelectrochemical oxidation of water at CdS and CdSe anodes coated with composites of conducting polymer containing RuO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 337-349.	0.1	13
173	Carrier mobility enhancement in semiconducting poly(3-methylthiophene) by electrochemical inclusion of cooper. Synthetic Metals, 1989, 31, 267-273.	3.9	7
174	Semiconducting conjugated oligomers for molecular electronics. Synthetic Metals, 1989, 28, 723-727.	3.9	37
175	Conjugated polymers and oligomers as active material for electronic devices. Synthetic Metals, 1989, 28, 705-714.	3.9	97
176	Generation of Stable Radical Cations (Polarons) and Dications (Bipolarons) on Model Thiophene Oligomers. Materials Research Society Symposia Proceedings, 1989, 173, 379.	0.1	5
177	Cathodic electropolymerization of polythiophene on platinum and various semiconducting electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 246, 467-472.	0.1	26
178	Protection of CdSe Oxygen Photoanodes by Poly(bithiophene)â€Polypyrrole Composites and Copolymers. Journal of the Electrochemical Society, 1988, 135, 1695-1699.	2.9	28
179	Thin Films of Conjugated Polymers for Photoelectrochemical and Electronic Devices. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 1261-1266.	0.9	12
180	Stabilization of CdS and CdSe photoelectrodes modified by a catalyst-containing polythiophene coating. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 402-405.	0.9	7

#	Article	IF	CITATIONS
181	Thin polymer films on semiconductors: From their protection to the realization of molecular electronic devices. Makromolekulare Chemie Macromolecular Symposia, 1987, 8, 159-170.	0.6	11
182	Organic semiconducting polymers as molecular material for electronic devices. Synthetic Metals, 1987, 18, 693-698.	3.9	40
183	Polythiophene-GaAs p-n heterojunction solar cells. Solar Energy Materials and Solar Cells, 1986, 13, 47-55.	0.4	60
184	Longâ€Term Stabilization of Polythiopheneâ€Protected n â€â€‰GaAs Photoanodes in Aqueous Solution. Jou of the Electrochemical Society, 1985, 132, 634-637.	ırnal 2.9	28
185	Protection of n â€â€‰GaAs Photoanodes by Photoelectrochemical Grafting of Poly (3â€Methylâ€thiophene) Poly (3,4â€Dimethylâ€thiophene) Films. Journal of the Electrochemical Society, 1984, 131, 151-156.	and	39
186	Electrochemically grown polythiophene and poly(3-methylthiophene) organic photovoltaic cells. Thin Solid Films, 1984, 111, 93-103.	1.8	157
187	Quantitative Comparison of Fermi Level Pinning at GaAs / Metal and GaAs / Liquid Junctions. Jou the Electrochemical Society, 1984, 131, 2563-2569.	urnal of	42
188	Capacitance-voltage measurements and flat-band potential determination on Zr-doped î±-Fe2O3 single-crystal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 159, 421-436.	0.1	85
189	Detailed Analysis of a Redox Stabilized Liquid Junction Solar Cell: Application to the Cell. Journal of the Electrochemical Society, 1983, 130, 2352-2357.	2.9	37
190	Photocurrent onset potential and flatband potential of a pâ€type GaP semiconducting photoelectrode. Applied Physics Letters, 1982, 40, 409-411.	3.3	14
191	Etude d'une cellule photovoltaÃ ⁻ que à jonction liquide : la cellule GaAs-n/(Se2-/Sen2-)/Pt. Revue De Physique Appliquée, 1982, 17, 801-806.	0.4	3
192	Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal. Journal of Crystal Growth, 1982, 57, 118-124.	1.5	52
193	Cellules photo-électrochimiques à électrodes semiconductrices pour la conversion et le stockage de l'énergie solaire. Revue De Physique Appliquée, 1980, 15, 463-476.	0.4	8
194	Flatband potential of apâ€ŧype phosphide electrode. Journal of Applied Physics, 1978, 49, 3571-3573.	2.5	16