

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937965/publications.pdf Version: 2024-02-01

DINCLU

#	Article	IF	CITATIONS
1	Visible-light induced synthesis of 8H-indolo[3,2,1-de]phenanthridin-8-ones and related heterocycles using benzothiadiazole as photocatalyst. Tetrahedron Letters, 2022, 91, 153648.	1.4	1
2	Rh(<scp>iii</scp>)-Catalyzed C–H bond activation/annulation reactions of arylacyl ammonium salts with 4-diazoisochroman-3-imines and 4-diazoisoquinolin-3-ones. Organic and Biomolecular Chemistry, 2022, 20, 1900-1906.	2.8	5
3	Preparation and photoluminescent properties of amino 2,1,3â€benzoxadiazoles (Amâ€BODs) with Dâ€Aâ€D and Dâ€Aâ€A conjugation systems. Chemistry - an Asian Journal, 2022, , .	3.3	0
4	Cu(II)-Catalyzed Synthesis of 4-(1,4,5,6-Tetrahydropyridin-3-yl)-1,4-dihydroisoquinolin-3-ones from 4-Diazoisoquinolin-3-ones. Journal of Organic Chemistry, 2022, 87, 4088-4096.	3.2	3
5	Base Promoted Three-Component Annulation of 4-Diazoisochroman-3-imines with Dimethylsulfonium Ylides: Synthesis of Highly Functionalized Isochromeno[4,3- <i>c</i>]pyridazines. Journal of Organic Chemistry, 2021, 86, 455-465.	3.2	10
6	Recent advances in the synthesis of indole embedded heterocycles with 3-diazoindolin-2-imines. Organic Chemistry Frontiers, 2021, 8, 2059-2078.	4.5	32
7	Syntheses of 4-allyl-/4-allenyl-4-(arylthio)-1,4-dihydroisoquinolin-3-ones <i>via</i> the photochemical Doyle–Kirmse reaction. Organic and Biomolecular Chemistry, 2021, 19, 6341-6345.	2.8	7
8	Synthesis of 4-boraneyl-1,4-dihydroisoquinolin-3-ones via copper-catalyzed Boron–Hydrogen bond insertion of 4-diazo-1,4-dihydroisoquinolin-3-ones into amine-borane adduct. Tetrahedron, 2021, 84, 132019.	1.9	2
9	Photocatalytic Approach for Construction of 5,6-Dihydroimidazo[2,1- <i>a</i>]isoquinolines and Their Luminescent Properties. Journal of Organic Chemistry, 2021, 86, 8101-8111.	3.2	13
10	Delocalized Excitation or Intramolecular Energy Transfer in Pyrene Core Dendrimers. Journal of Physical Chemistry Letters, 2021, 12, 7717-7725.	4.6	1
11	Preparation of 4-Diazoisoquinolin-3-ones via Dimroth Rearrangement and Their Extension to 4-Aryltetrahydroisoquinolin-3-ones. Organic Letters, 2020, 22, 26-30.	4.6	26
12	Preparation and photophysical properties of quinazoline-based fluorophores. RSC Advances, 2020, 10, 30297-30303.	3.6	12
13	Preparation and Photoluminescent Properties of Three 5â€Amino Benzothiadiazoles (5â€∎mBTDs). Chemistry - an Asian Journal, 2020, 15, 3519-3526.	3.3	4
14	Syntheses of 2-Iminoindolin-3-ones and 2-Alknyl-2,3-dihydroquinazolin-4(1 <i>H</i>)-ones from 3-Diazoindolin-2-imines. Journal of Organic Chemistry, 2020, 85, 11766-11777.	3.2	10
15	TfOH-promoted synthesis of 4,5-dihydrooxazolo[5,4- <i>c</i>]isoquinolines <i>via</i> formal [3 + 2] cycloaddition of 4-diazoisoquinolin-3-one and benzonitriles. Organic and Biomolecular Chemistry, 2020, 18, 7671-7676.	2.8	8
16	Synthesis of 8-Alkoxy-5 <i>H</i> -isochromeno[3,4- <i>c</i>]isoquinolines and 1-Alkoxy-4-arylisoquinolin-3-ols through Rh(III)-Catalyzed C–H Functionalization of Benzimidates with 4-Diazoisochroman-3-imines and 4-Diazoisoquinolin-3-ones. Journal of Organic Chemistry, 2020, 85, 5525-5535.	3.2	20
17	Co(III)-catalyzed reaction between 3-diazoindolin-2-imines and 1-pyrimidinylindoles for the synthesis of 2,3′-biindoles. Tetrahedron, 2020, 76, 131371.	1.9	5
18	Copper(I)-Promoted Trifluoromethylthiolation of 3-Diazoindolin-2-imines with AgSCF ₃ : Synthesis of 3-((Trifluoromethyl)thio)-2-aminoindoles. Chinese Journal of Organic Chemistry, 2020, 40, 3300.	1.3	4

#	Article	IF	CITATIONS
19	General Approach To Construct Azepino[2,3- <i>b</i> ;4,5- <i>b</i> â€2]diindoles, Azocino[2,3- <i>b</i> ;4,5- <i>b</i> â€2]diindoles, and Azonino[2,3- <i>b</i> ;4,5- <i>b</i> â€2]diindoles via Rh(II)-Catalyzed Reactions of 3-Diazoindolin-2-imines with 3-(Bromoalkyl)indoles. Journal of Organic Chemistry, 2019, 84, 9561-9569.	3.2	11
20	Emissions from a triphenylamine–benzothiadiazole–monocarbaborane triad and its applications as a fluorescent chemosensor and a white OLED component. Journal of Materials Chemistry C, 2019, 7, 2430-2435.	5.5	25
21	Copperâ€Catalyzed Dimerization of Sulfoxonium Ylides with 3â€Diazoindolinâ€2â€imines: A Practical and Efficient Approach to Spiro[cyclopropaneâ€1,3′â€indolin]â€2′â€imines. European Journal of Organic Cher 2019, 2019, 4447-4456.	nist2:34,	17
22	BF3-promoted reactions between aryl aldehydes and 3-diazoindolin-2-imines: Access to 2-amino-3-arylindoles. Tetrahedron, 2019, 75, 3779-3787.	1.9	3
23	Butterfly-shaped ï€-extended benzothiadiazoles as promising emitting materials for white OLEDs. Journal of Materials Chemistry C, 2019, 7, 6706-6713.	5.5	33
24	Copper-Carbene-Triggered Electrophilic Cyclization of <i>o</i> -Hydroxyarylenaminones with 3-Diazoindolin-2-imines: Synthesis of 3-Indolyl-4 <i>H</i> -chromen-4-ones and Pyrido[2,3- <i>b</i> :6,5- <i>b</i> :倲]diindoles. Journal of Organic Chemistry, 2019, 84, 6395-6404.	3.2	17
25	Palladium-Catalyzed Synthesis of 3-Haloindol-2-amines from 3-Diazoindolin-2-imines and Alkyl Halides. Journal of Organic Chemistry, 2019, 84, 6655-6668.	3.2	9
26	3-Amino-fluorene-2,4-dicarbonitriles (AFDCs) as Photocatalysts for the Decarboxylative Arylation of α-Amino Acids and α-Oxy Acids with Arylnitriles. Organic Letters, 2019, 21, 2130-2133.	4.6	36
27	Upper Excited Triplet State-Mediated Intersystem Crossing for Anti-Kasha's Fluorescence: Potential Application in Deep-Ultraviolet Sensing. Journal of Physical Chemistry C, 2019, 123, 5761-5766.	3.1	21
28	Rh(III)-Catalyzed Synthesis of 3-Amino-4-arylisoquinolinones from 4-Diazoisochroman-3-imines and <i>N</i> -Methoxybenzamides. Organic Letters, 2019, 21, 1497-1501.	4.6	24
29	Preparation of spiro[imidazolidine-4,3′-indolin]-2′-imines <i>via</i> copper(<scp>i</scp>)-catalyzed formal [2 + 2 + 1] cycloaddition of 3-diazoindolin-2-imines and triazines. Organic and Biomolecular Chemistry, 2019, 17, 8849-8852.	2.8	21
30	Polymorphism-dependent emissions of two phenoxazine derivatives. Dyes and Pigments, 2019, 161, 44-50.	3.7	14
31	Copper-catalyzed synthesis of 3-allyl-2-aminoindoles from 3-diazoindolin-2-imines and allyltrimethylsilane. Tetrahedron, 2019, 75, 1597-1604.	1.9	3
32	Preparation of Benzo[<i>c</i>]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1 <i>H</i> -indoles with Ketenimines and Subsequent Oxidative Cyclization. Organic Letters, 2018, 20, 1426-1429.	4.6	40
33	A copper-catalyzed reaction of 3-diazoindolin-2-imines with 2-(phenylamino)ethanols: convenient access to spiro[indoline-3,2′-oxazolidin]-2-imines. Chemical Communications, 2018, 54, 1529-1532.	4.1	27
34	Rhodium-catalyzed reactions of 3-diazoindolin-2-imines with enamines and their extensions towards 5 H -pyrazino[2,3- b]indoles. Tetrahedron, 2018, 74, 2151-2157.	1.9	12
35	Convenient synthesis of 2-amino-3-(arylthio)indoles via the Rh-catalyzed reaction of 3-diazoindol-2-imines with thioesters. Organic and Biomolecular Chemistry, 2018, 16, 439-443.	2.8	18
36	Copper-Catalyzed Syntheses of 3-Allyl-3-arylthioindolin-2-imines and 3-Allenyl-3-arylthioindolin-2-imines from 3-Diazoindolin-2-imines. Journal of Organic Chemistry, 2018, 83, 13956-13964.	3.2	14

#	Article	IF	CITATIONS
37	Expression of anti-Kasha's emission from amino benzothiadiazole and its utilization for fluorescent chemosensors and organic light emitting materials. Journal of Materials Chemistry C, 2018, 6, 7864-7873.	5.5	31
38	Turning on the solid emission from non-emissive 2-aryl-3-cyanobenzofurans by tethering tetraphenylethene for green electroluminescence. Materials Chemistry Frontiers, 2017, 1, 1858-1865.	5.9	27
39	From 1-Sulfonyl-4-aryl-1,2,3-triazoles to 1-Allenyl-5-aryl-1,2,3-triazoles. Journal of Organic Chemistry, 2017, 82, 5294-5300.	3.2	18
40	Rh-Catalyzed Annulations of <i>N</i> -Methoxybenzamides and Ketenimines: Sterically and Electronically Controlled Synthesis of Isoquinolinones and Isoindolinones. Journal of Organic Chemistry, 2017, 82, 3787-3797.	3.2	26
41	Rhodium-Catalyzed Cycloadditions between 3-Diazoindolin-2-imines and 1,3-Dienes. Organic Letters, 2017, 19, 1630-1633.	4.6	59
42	Convenient preparation of 4-diazoisochroman-3-imines and 3-subsituted 3,5-dihydroisochromeno[3,4-d][1,2,3]triazoles. Chemical Communications, 2017, 53, 3769-3772.	4.1	40
43	Oxazole-based high resolution ratiometric fluorescent probes for hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2017, 247, 609-616.	7.8	24
44	4-Diazoisochroman-3-imines: A Class of Metal Carbene Precursors for the Synthesis of Isochromene Derivatives. Journal of Organic Chemistry, 2017, 82, 10953-10959.	3.2	24
45	Preparation of 2-Amino-3-arylindoles via Pd-Catalyzed Coupling between 3-Diazoindolin-2-imines and Arylboronic Acids as well as Their Extension to 3-Aryl-3-fluoroindolin-2-imines. Organic Letters, 2017, 19, 4604-4607.	4.6	29
46	BF ₃ -Promoted Divergent Reactions between Tryptophols and Propargylic Alcohols. Organic Letters, 2017, 19, 4114-4117.	4.6	27
47	Preparation of Spiro[indene-1,1′-isoindolin]-3′-ones via Sulfuric Acid-Promoted Cascade Cyclization. Journal of Organic Chemistry, 2017, 82, 8407-8418.	3.2	14
48	Rh-Catalyzed Conversion of 3-Diazoindolin-2-imines to 5 <i>H</i> -Pyrazino[2,3- <i>b</i>]indoles with Photoluminescent Properties. Organic Letters, 2017, 19, 6514-6517.	4.6	49
49	TfOH-Catalyzed Reaction between 3-Diazoindolin-2-imines and Electron-Rich Arenes: Access to 3-Aryl-2-aminoindoles. Journal of Organic Chemistry, 2017, 82, 12640-12646.	3.2	13
50	α-Amidino Rhodium Carbenes: Key Intermediates for the Preparation of (<i>E</i>)-2-Aminomethylene-3-oxoindoles and Pyranoindoles. Organic Letters, 2016, 18, 3682-3685.	4.6	34
51	Synthesis of 2,3â€Disubstituted Quinolines via Ketenimine or Carbodiimide Intermediates. Chemistry - A European Journal, 2016, 22, 15144-15150.	3.3	20
52	Construction of Pyrrolo[1,2- <i>a</i>]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1 <i>H</i> -indoles with Ketenimines and Subsequent Base-Promoted Cyclization. Organic Letters, 2016, 18, 4706-4709.	4.6	46
53	Rh-Catalyzed annulations of N-methoxybenzamides with ketenimines: synthesis of 3-aminoisoindolinones and 3-diarylmethyleneisoindolinones with strong aggregation induced emission properties. Chemical Communications, 2016, 52, 10676-10679.	4.1	27
54	Preparation of 3-Aryl-2-aminoindoles via Rhodium-Catalyzed Coupling Reaction between 2-Arylpyridines and 3-Diazoindolin-2-imines. Journal of Organic Chemistry, 2016, 81, 9433-9437.	3.2	27

#	Article	IF	CITATIONS
55	Preparation of 3-azoindoles and 3-hydrazonoindolin-2-imines as well as their applications as NNO pincer ligands for boron. Organic and Biomolecular Chemistry, 2016, 14, 7114-7118.	2.8	9
56	Copper-Catalyzed Preparation of 2-Aryl-3-cyanobenzofurans with Bright Blue Photoluminescence. Organic Letters, 2016, 18, 728-731.	4.6	16
57	Preparation of 1,2,5â€Trisubstituted 1 <i>H</i> â€Imidazoles from Ketenimines and PropÂargÂylic Amines by Silverâ€Catalyzed or Iodineâ€Promoted Electrophilic Cyclization Reaction of Alkynes. European Journal of Organic Chemistry, 2015, 2015, 5789-5797.	2.4	31
58	Preparation of 3-aryl-2-aminoindoles, 3-allyl-3-amino-2-iminoindolines, and tetrahydro-[1,4]diazepino[2,3-b]indoles from 3-diazoindolin-2-imines. Chemical Communications, 2015, 51, 11056-11059.	4.1	51
59	Copper-mediated three-component synthesis of 3-cyanoimidazo[1,2-a]pyridines. Chemical Communications, 2015, 51, 15378-15381.	4.1	48
60	Cu(NO ₃) ₂ ·3H ₂ O-mediated cyanation of aryl iodides and bromides using DMF as a single surrogate of cyanide. Chemical Communications, 2015, 51, 2840-2843.	4.1	34
61	Copper-Catalyzed Cascade Double C3-Indolations of 3-Diazoindolin-2-imines with Indoles: Convenient Access to 3,3-Diaryl-2-iminoindoles. Organic Letters, 2015, 17, 1192-1195.	4.6	43
62	Lewis Acid Catalyzed Cascade Reaction of 3-(2-Benzenesulfonamide)propargylic Alcohols to Spiro[indene-benzosultam]s. Organic Letters, 2015, 17, 242-245.	4.6	28
63	Copper-mediated cyanation of indoles and electron-rich arenes using DMF as a single surrogate. Organic and Biomolecular Chemistry, 2015, 13, 8322-8329.	2.8	33
64	Rh-Catalyzed Reactions of 3-Diazoindolin-2-imines: Synthesis of Pyridoindoles and Tetrahydrofuropyrroloindoles. Organic Letters, 2015, 17, 4412-4415.	4.6	43
65	Copper-mediated cyanation reactions. Tetrahedron Letters, 2014, 55, 1271-1280.	1.4	132
66	Recent Advances on the Lewis Acid-Catalyzed Cascade Rearrangements of Propargylic Alcohols and Their Derivatives. ACS Catalysis, 2014, 4, 1911-1925.	11.2	232
67	A highly selective and real-time ratiometric fluorescent chemosensor for fluoride anion detection under either neutral or basic condition. Sensors and Actuators B: Chemical, 2014, 195, 320-323.	7.8	19
68	Preparation of 3-Diazoindolin-2-imines via Cascade Reaction between Indoles and Sulfonylazides and Their Extensions to 2,3-Diaminoindoles and Imidazo[4,5-b]indoles. Organic Letters, 2014, 16, 5096-5099.	4.6	83
69	Recent advances in transition-metal-catalyzed C–CN bond activations. RSC Advances, 2014, 4, 47806-47826.	3.6	72
70	Copper-Catalyzed Three-Component Synthesis of 3-Aminopyrazoles and 4-Iminopyrimidines via β-Alkynyl- <i>N</i> -sulfonyl Ketenimine Intermediates. Organic Letters, 2014, 16, 4814-4817.	4.6	42
71	Fluoride anion detection based on the excited state intramolecular proton transfer (ESIPT) of 2-(o-hydroxyphenyl)imidazole induced by the Si–O cleavage of its silyl ether. Sensors and Actuators B: Chemical, 2014, 203, 635-640.	7.8	20
72	Preparation of Triazoloindoles via Tandem Copper Catalysis and Their Utility as α-Imino Rhodium Carbene Precursors. Organic Letters, 2014, 16, 1244-1247.	4.6	143

#	Article	IF	CITATIONS
73	Lewis acid-promoted cascade reaction of primary amine, 2-butynedioate, and propargylic alcohol: a convenient approach to 1,2-dihydropyridines and 1H-pyrrolo[3,4-b]pyridine-5,7(2H,6H)-diones. Tetrahedron, 2013, 69, 8353-8359.	1.9	29
74	Copper-mediated cyanation of aryl boronic acids using benzyl cyanide. Tetrahedron, 2013, 69, 8400-8404.	1.9	40
75	Tandem Synthesis of Benzo[<i>b</i>]carbazoles and Their Photoluminescent Properties. Chemistry - A European Journal, 2013, 19, 12788-12793.	3.3	26
76	Palladiumâ€Catalyzed Cyclocarbonylation of 2â€Halobenzaldehyde and Hydrazines: A Facile Synthesis of 2â€Aminoisoindolinâ€1â€ones. Chinese Journal of Chemistry, 2013, 31, 182-186.	4.9	6
77	9,11,12,14â€Tetraaryldibenzo[<i>f</i> , <i>h</i>]imidazo[1,2â€ <i>b</i>]isoquinolines and Their Emission Responses to Solvent Polarity, Acidity, and Nitroarenes. European Journal of Organic Chemistry, 2013, 2013, 7320-7327.	2.4	3
78	One-pot synthesis of 2-aryl-3-alkoxycarbonyl chromones through a cascade Lewis acid-catalyzed aldehyde olefination/oxa-Michael addition/oxidation. Tetrahedron, 2013, 69, 647-652.	1.9	17
79	Cyanation of indoles with benzyl cyanide as the cyanide anion surrogate. Tetrahedron, 2013, 69, 4236-4240.	1.9	53
80	Fluorescent chemosensors based on 9-cycloheptatrienylidene fluorenes (9-CHFs). New Journal of Chemistry, 2013, 37, 1645.	2.8	16
81	Copperâ€Mediated Cyanation of Aryl Halides by Activation of Benzyl Cyanide as the Cyanide Source. European Journal of Organic Chemistry, 2013, 2013, 4032-4036.	2.4	56
82	Structure–Property Investigations of Substituted Triarylamines and Their Applications as Fluorescent pH Sensors. Chemistry - an Asian Journal, 2013, 8, 1144-1151.	3.3	21
83	Synthesis of Indeno[1,2- <i>c</i>]furans via a Pd-Catalyzed Bicyclization of 2-Alkynyliodobenzene and Propargylic Alcohol. Journal of Organic Chemistry, 2012, 77, 11368-11371.	3.2	27
84	Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. Journal of Materials Chemistry, 2012, 22, 4527.	6.7	103
85	Palladium-catalyzed cyanide metathesis: utilization of benzyl cyanide as an operator-benign reagent for aryl halide cyanations. RSC Advances, 2012, 2, 6167.	3.6	64
86	One-pot synthesis of 4(3H)-quinazolinones from azides, alkynes, anilines, and carbon monoxide. Tetrahedron Letters, 2012, 53, 5671-5673.	1.4	21
87	Copper-catalyzed cyanation of arenes using benzyl nitrile as a cyanide anion surrogate. Chemical Communications, 2012, 48, 9933.	4.1	115
88	3-Alkenylation or 3-Alkylation of Indole with Propargylic Alcohols: Construction of 3,4-Dihydrocyclopenta[<i>b</i>]indole and 1,4-Dihydrocyclopenta[<i>b</i>]indole in the Presence of Different Catalysts. Journal of Organic Chemistry, 2012, 77, 9510-9520.	3.2	76
89	The thriving chemistry of ketenimines. Chemical Society Reviews, 2012, 41, 5687.	38.1	232
90	Palladiumâ€Catalyzed Reaction of Arylamine and Diarylacetylene: Solventâ€Controlled Construction of 2,3â€Diarylindoles and Pentaarylpyrroles. European Journal of Organic Chemistry, 2012, 2012, 4380-4386.	2.4	42

#	Article	IF	CITATIONS
91	BODIPY modified 9-cycloheptatrienylidene fluorene derivatives: Fluorescent "turn-on―for detecting Cu2+ with acidity independence. Sensors and Actuators B: Chemical, 2012, 168, 310-317.	7.8	13
92	Synthesis of 2,3-diiodoindenes and their applications in construction of 13H-indeno[1,2-l]phenanthrenes. Tetrahedron, 2012, 68, 2844-2850.	1.9	33
93	Palladium atalyzed Selective Synthesis of Naphthalenes and Indenones and Their Luminescent Properties. European Journal of Organic Chemistry, 2012, 2012, 824-830.	2.4	19
94	Palladium catalyzed bicyclization of 1,8-diiodonaphthalene and tertiary propargylic alcohols to phenalenones and their applications as fluorescent chemosensor for fluoride ions. Chemical Communications, 2011, 47, 2628.	4.1	16
95	Tandem Reaction of Propargylic Alcohol, Sulfonamide, and <i>N</i> -lodosuccinimide: Synthesis of <i>N</i> -(2-lodoinden-1-yl)arenesulfonamide. Organic Letters, 2011, 13, 1024-1027.	4.6	81
96	Lewis Acid-Promoted Three-Component Reactions of Propargylic Alcohols with 2-Butynedioates and Secondary Amines. Journal of Organic Chemistry, 2011, 76, 8922-8929.	3.2	41
97	Tandem Reaction of Propargyl Alcohol and <i>N</i> -Sulfonylhydrazone: Synthesis of Dihydropyrazole and Its Utility in the Preparation of 3,3-Diarylacrylonitrile. Organic Letters, 2011, 13, 3553-3555.	4.6	42
98	Diasteroselective synthesis of oxazolidines and imidazolidines via the Lewis acid catalyzed C–C cleavage of aziridines. Tetrahedron, 2011, 67, 9609-9617.	1.9	37
99	Naphthalene-based fluorophores: Synthesis characterization, and photophysical properties. Journal of Luminescence, 2011, 131, 2775-2783.	3.1	32
100	1,3,6,8-Tetrakis[(triisopropylsilyl)ethynyl]pyrene: A highly efficient solid-state emitter for non-doped yellow electroluminescence devices. Organic Electronics, 2011, 12, 2236-2242.	2.6	18
101	Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chemical Science, 2011, 2, 672-675.	7.4	216
102	Four Iodineâ€Mediated Electrophilic Cyclizations of Rigid Parallel Triple Bonds Mapped from 1,8â€Đialkynylnaphthalenes. Chemistry - A European Journal, 2011, 17, 8105-8114.	3.3	61
103	Palladiumâ€Catalyzed Synthesis of 7,9â€Diarylâ€8 <i>H</i> â€acenaphtho[1,2â€ <i>c</i>]pyrroles and Their Application in Explosives Detection. Chemistry - A European Journal, 2011, 17, 9920-9923.	3.3	38
104	Condition-controlled selective synthesis of coumarins and flavones from 3-(2-hydroxyphenyl)propiolates and iodine. Tetrahedron Letters, 2011, 52, 4164-4167.	1.4	14
105	Synthesis and photophysical properties of tetrafluorophenyl-modified carbazole oligomers. Tetrahedron, 2010, 66, 7583-7589.	1.9	5
106	Copperâ€Catalyzed Threeâ€Component Synthesis of 2â€Iminodihydrocoumarins and 2â€Iminocoumarins. Advanced Synthesis and Catalysis, 2010, 352, 1139-1144.	4.3	54
107	Cascade synthesis of substituted 4-amino-1,2,4-triazol-3-ones from aldehyde hydrazones and azodicarboxylates. Tetrahedron, 2010, 66, 2427-2432.	1.9	12
108	Copper-catalyzed cascade approach to 1,3-diazabicyclo[3.1.0]hex-3-enes from aziridines and ethyl diazoacetate. Tetrahedron Letters, 2010, 51, 4763-4766.	1.4	12

#	Article	IF	CITATIONS
109	Strategies for Heterocyclic Synthesis via Cascade Reactions Based on Ketenimines. Synlett, 2010, 2010, 165-173.	1.8	42
110	Electron Transfer and Aggregate Formation Coinduced Emission Enhancement of 9-Cycloheptatrienylidene Fluorenes in the Presence of Cupric Chloride. Journal of Physical Chemistry C, 2010, 114, 18702-18711.	3.1	9
111	Gigantic Two-Photon Absorption Cross Sections and Strong Two-Photon Excited Fluorescence in Pyrene Core Dendrimers with Fluorene/Carbazole as Dendrons and Acetylene as Linkages. Journal of Physical Chemistry B, 2010, 114, 11737-11745.	2.6	54
112	Synthesis of Functionalized Indenes via Cascade Reaction of Aziridines and Propargyl Alcohols. Organic Letters, 2009, 11, 2615-2618.	4.6	73
113	Solution-Processable Stiff Dendrimers: Synthesis, Photophysics, Film Morphology, and Electroluminescence. Journal of Organic Chemistry, 2009, 74, 383-395.	3.2	72
114	Synthesis and characterization of 9-(cycloheptatrienylidene)fluorene derivatives: New fluorescent chemosensors for detection of Fe3+ and Cu2+. Sensors and Actuators B: Chemical, 2008, 134, 414-418.	7.8	19
115	A new fluorescent chemosensor detecting Zn2+ and Cu2+ in methanol/HEPES buffer solution. Sensors and Actuators B: Chemical, 2008, 135, 128-132.	7.8	21
116	Synthesis and characterization of deep blue emitters from starburst carbazole/fluorene compounds. Tetrahedron, 2008, 64, 2658-2668.	1.9	38
117	Switchable 2,3-dithienylmaleimide bonded to different fluorophores: synthesis and photochromic properties. Journal of Zhejiang University: Science A, 2008, 9, 1590-1594.	2.4	2
118	Zigzag Molecules from Pyrene-Modified Carbazole Oligomers:  Synthesis, Characterization, and Application in OLEDs. Journal of Organic Chemistry, 2008, 73, 594-602.	3.2	87
119	White Light from Excimer and Electromer in Single-Emitting-Component Electroluminescent Diodes. Journal of Physical Chemistry C, 2008, 112, 8511-8515.	3.1	51
120	Synthesis of tetraarylsilanes and its usage as blue emitters in electroluminescence. Synthetic Metals, 2008, 158, 1054-1058.	3.9	14
121	Fluorescent Conjugated Dendrimers with Fluorinated Terminal Groups: Nanofiber Formation and Electroluminescence Properties. Organic Letters, 2008, 10, 3041-3044.	4.6	40
122	Synthesis and Properties of 1-(4-Aminophenyl)-2,4-dicyano-3-diethylamino-9,9-diethylfluorenes: Potential Fluorescent Material. Chemistry Letters, 2008, 37, 570-571.	1.3	17
123	New fluorophores with rod-, V- or star-shaped structure: Synthesis, photoluminescence and electroluminescence. Synthetic Metals, 2007, 157, 414-420.	3.9	8
124	Dual-Fluorescent Donorâ^'Acceptor Dyad with Tercarbazole Donor and Switchable Imide Acceptor: Promising Structure for an Integrated Logic Gate. Organic Letters, 2007, 9, 547-550.	4.6	36
125	Fluorene-Centered, Ethynylene-Linked Carbazole Oligomers:  Synthesis, Photoluminescence, and Electroluminescence. Journal of Physical Chemistry C, 2007, 111, 6883-6888.	3.1	28
126	Synthesis and Photophysical Properties of Nonbenzoid Ended Fluorophores. Journal of Physical Chemistry B, 2007, 111, 10386-10396.	2.6	12

#	Article	IF	CITATIONS
127	Oligo(2,7-fluorene ethynylene)s with Pyrene Moieties:  Synthesis, Characterization, Photoluminescence, and Electroluminescence. Journal of Organic Chemistry, 2007, 72, 8345-8353.	3.2	57
128	Novel, yellow-emitting anthracene/fluorene oligomers: synthesis and characterization. Tetrahedron, 2007, 63, 7809-7815.	1.9	21
129	Synthesis of 9-ethynyl-9-fluorenol and its derivatives for crystallographic and optical properties study. Tetrahedron, 2007, 63, 11040-11047.	1.9	7
130	Synthesis and fluorescence properties of carbazole and fluorene-based compounds. Journal of Luminescence, 2007, 127, 349-354.	3.1	54
131	Color tunable, ratiometric pH sensor for high and low pH values base on 9-(cycloheptatrienylidene)fluorene derivatives. Sensors and Actuators B: Chemical, 2007, 122, 389-394.	7.8	17
132	Synthesis and characterization of light-emitting materials composed of carbazole, pyrene and fluorene. Synthetic Metals, 2006, 156, 209-214.	3.9	30
133	Blue light-emitting, electron-transporting materials based on ethynyl-linked D–A systems. Chemical Physics Letters, 2006, 423, 293-296.	2.6	13
134	An efficient D–A dyad for solvent polarity sensor. Sensors and Actuators B: Chemical, 2006, 114, 28-31.	7.8	15
135	Optical properties of a series of tetraarylthiophenes. Optical Materials, 2006, 29, 407-409.	3.6	11
136	Blue organic electroluminescent device with tetra(β-naphthyl)silane as hole blocking materials. Thin Solid Films, 2005, 478, 121-124.	1.8	13
137	Carbazole–pyrene-based organic emitters for electroluminescent device. Chemical Physics Letters, 2005, 408, 169-173.	2.6	41
138	Efficient blue electroluminescent device using tetra(β-naphthyl)silane as a hole-blocking material. Applied Physics Letters, 2005, 87, 222115.	3.3	17
139	Dibenzosuberenylidene-Ended Fluorophores:Â Rapid and Efficient Synthesis, Characterization, and Aggregation-Induced Emissions. Journal of Physical Chemistry B, 2005, 109, 19627-19633.	2.6	100
140	Synthesis and Characterization of 9-(Cycloheptatrienylidene)fluorene Derivatives:  Acid-Triggered "Switch on―of Fluorophores. Organic Letters, 2005, 7, 87-90.	4.6	27
141	9-(Cycloheptatrienylidene)-fluorene Derivative:  Remarkable Ratiometric pH Sensor and Computing Switch with NOR Logic Gate. Organic Letters, 2005, 7, 3669-3672.	4.6	80
142	Acidic-sensing property of 9-(cycloheptatrienylidene)fluorene by UV-Vis spectroscopy. Sensors and Actuators B: Chemical, 2004, 99, 264-266.	7.8	15
143	Blue organic light emitting materials from π-conjugated compounds. Optical Materials, 2004, 26, 243-246.	3.6	8
144	FACILE SYNTHESIS OF 2-SUBSTITUTED-QUINAZOLIN-4-(3H)-ONES PROMOTED BY Sml2. Synthetic Communications, 2001, 31, 323-327.	2.1	9

#	Article	IF	CITATIONS
145	Synthesis of Octasubstituted Cyclooctatetraenes and Their Use as Electron Transporters in Organic Light Emitting Diodes. Journal of the American Chemical Society, 2000, 122, 7480-7486.	13.7	55