Everett Clinton Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937904/publications.pdf

Version: 2024-02-01

18 papers 2,360 citations

16 h-index 18 g-index

18 all docs 18 docs citations

times ranked

18

5008 citing authors

#	Article	IF	CITATIONS
1	Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio, 2018, 9, .	4.1	1,142
2	Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics. PLoS Pathogens, 2013, 9, e1003565.	4.7	392
3	Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens. Journal of Virology, 2016, 90, 7415-7428.	3.4	137
4	Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses. Annual Review of Virology, 2014, 1, 111-132.	6.7	107
5	Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity. PLoS Pathogens, 2013, 9, e1003760.	4.7	92
6	Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. Journal of Virology, 2016, 90, 9683-9692.	3.4	71
7	Mutations in Coronavirus Nonstructural Protein 10 Decrease Virus Replication Fidelity. Journal of Virology, 2015, 89, 6418-6426.	3.4	56
8	Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity. Journal of Virology, 2018, 92, .	3.4	52
9	Coronaviruses Induce Entry-Independent, Continuous Macropinocytosis. MBio, 2014, 5, e01340-14.	4.1	51
10	Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations. MBio, 2017, 8, .	4.1	51
11	<i>In Situ</i> Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins. MBio, 2017, 8, .	4.1	46
12	Trimeric Transmembrane Domain Interactions in Paramyxovirus Fusion Proteins. Journal of Biological Chemistry, 2013, 288, 35726-35735.	3.4	34
13	The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathogens, 2017, 13, e1006254.	4.7	30
14	Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry. Journal of Virology, 2015, 89, 8701-8712.	3.4	29
15	Differential Rates of Protein Folding and Cellular Trafficking for the Hendra Virus F and G Proteins: Implications for F-G Complex Formation. Journal of Virology, 2009, 83, 8998-9001.	3.4	23
16	Beyond Anchoring: the Expanding Role of the Hendra Virus Fusion Protein Transmembrane Domain in Protein Folding, Stability, and Function. Journal of Virology, 2012, 86, 3003-3013.	3.4	23
17	Side Chain Packing below the Fusion Peptide Strongly Modulates Triggering of the Hendra Virus F Protein. Journal of Virology, 2010, 84, 10928-10932.	3.4	12
18	Role of Sequence and Structure of the Hendra Fusion Protein Fusion Peptide in Membrane Fusion. Journal of Biological Chemistry, 2012, 287, 30035-30048.	3.4	12