## Nicole Riemer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937488/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 2020, 20, 4809-4888.                                                                                                                           | 4.9  | 327       |
| 2  | Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model Calculations of<br>N <sub>2</sub> O <sub>5</sub> : A Review. Aerosol Science and Technology, 2011, 45, 665-695.                                               | 3.1  | 212       |
| 3  | Aerosol Mixing State: Measurements, Modeling, and Impacts. Reviews of Geophysics, 2019, 57, 187-249.                                                                                                                               | 23.0 | 180       |
| 4  | Soot aging time scales in polluted regions during day and night. Atmospheric Chemistry and Physics, 2004, 4, 1885-1893.                                                                                                            | 4.9  | 166       |
| 5  | Simulating the evolution of soot mixing state with a particleâ€resolved aerosol model. Journal of Geophysical Research, 2009, 114, .                                                                                               | 3.3  | 162       |
| 6  | Impact of the heterogeneous hydrolysis of N2O5on chemistry and nitrate aerosol formation in the<br>lower troposphere under photosmog conditions. Journal of Geophysical Research, 2003, 108, .                                     | 3.3  | 141       |
| 7  | Estimating black carbon aging time-scales with a particle-resolved aerosol model. Journal of Aerosol<br>Science, 2010, 41, 143-158.                                                                                                | 3.8  | 112       |
| 8  | Particleâ€resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. Journal of Geophysical Research, 2010, 115, . | 3.3  | 107       |
| 9  | A conceptual framework for mixing structures in individual aerosol particles. Journal of Geophysical<br>Research D: Atmospheres, 2016, 121, 13,784.                                                                                | 3.3  | 98        |
| 10 | Black carbon absorption at the global scale is affected by particle-scale diversity in composition.<br>Nature Communications, 2016, 7, 12361.                                                                                      | 12.8 | 97        |
| 11 | Modeling aerosols on the mesoscale-Î <sup>3</sup> : Treatment of soot aerosol and its radiative effects. Journal of<br>Geophysical Research, 2003, 108, .                                                                          | 3.3  | 75        |
| 12 | Quantifying aerosol mixing state with entropy and diversity measures. Atmospheric Chemistry and Physics, 2013, 13, 11423-11439.                                                                                                    | 4.9  | 70        |
| 13 | MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state. Geoscientific Model Development, 2011, 4, 325-355.                                                               | 3.6  | 61        |
| 14 | Detailed heterogeneous oxidation of soot surfaces in a particle-resolved aerosol model. Atmospheric<br>Chemistry and Physics, 2011, 11, 4505-4520.                                                                                 | 4.9  | 49        |
| 15 | Single particle diversity and mixing state measurements. Atmospheric Chemistry and Physics, 2014, 14, 6289-6299.                                                                                                                   | 4.9  | 49        |
| 16 | Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9591-9605.                                                   | 3.3  | 49        |
| 17 | Weighted Flow Algorithms (WFA) for stochastic particle coagulation. Journal of Computational Physics, 2011, 230, 8427-8451.                                                                                                        | 3.8  | 47        |
| 18 | Explaining variance in black carbon's aging timescale. Atmospheric Chemistry and Physics, 2015, 15, 3173-3191.                                                                                                                     | 4.9  | 44        |

NICOLE RIEMER

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Quantification of black carbon mixing state from traffic: implications for aerosol optical properties.<br>Atmospheric Chemistry and Physics, 2016, 16, 4693-4706.                                               | 4.9 | 43        |
| 20 | Toward Reduced Representation of Mixing State for Simulating Aerosol Effects on Climate. Bulletin of the American Meteorological Society, 2017, 98, 971-980.                                                    | 3.3 | 39        |
| 21 | Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particleâ€resolved model. Journal of Geophysical Research, 2012, 117, .                                             | 3.3 | 36        |
| 22 | Metrics to quantify the importance of mixing state for CCN activity. Atmospheric Chemistry and Physics, 2017, 17, 7445-7458.                                                                                    | 4.9 | 33        |
| 23 | The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test. Geoscientific Model Development, 2014, 7, 1137-1157.                                                                                | 3.6 | 31        |
| 24 | Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC. Atmospheric Chemistry and Physics, 2014, 14, 5327-5347.                                                                        | 4.9 | 29        |
| 25 | Urban heat island impacted by fine particles in Nanjing, China. Scientific Reports, 2017, 7, 11422.                                                                                                             | 3.3 | 27        |
| 26 | Black carbon mixing state impacts on cloud microphysical properties: Effects of aerosol plume and environmental conditions. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5990-6013.               | 3.3 | 22        |
| 27 | A threeâ€dimensional sectional representation of aerosol mixing state for simulating optical properties<br>and cloud condensation nuclei. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5912-5929. | 3.3 | 21        |
| 28 | Machine Learning to Predict the Global Distribution of Aerosol Mixing State Metrics. Atmosphere, 2018, 9, 15.                                                                                                   | 2.3 | 21        |
| 29 | Quantifying Impacts of Aerosol Mixing State on Nucleation-Scavenging of Black Carbon Aerosol<br>Particles. Atmosphere, 2018, 9, 17.                                                                             | 2.3 | 17        |
| 30 | When is cloud condensation nuclei activity sensitive to particle characteristics at emission?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,476.                                               | 3.3 | 15        |
| 31 | Estimating Submicron Aerosol Mixing State at the Global Scale With Machine Learning and Earth<br>System Modeling. Earth and Space Science, 2021, 8, e2020EA001500.                                              | 2.6 | 15        |
| 32 | A single-column particle-resolved model for simulating the vertical distribution of aerosol mixing state: WRF-PartMC-MOSAIC-SCM v1.0. Geoscientific Model Development, 2017, 10, 4057-4079.                     | 3.6 | 12        |
| 33 | Simulating aerosol chamber experiments with the particle-resolved aerosol model PartMC. Aerosol<br>Science and Technology, 2017, 51, 856-867.                                                                   | 3.1 | 10        |
| 34 | Quantifying the effects of mixing state on aerosol optical properties. Atmospheric Chemistry and Physics, 2022, 22, 9265-9282.                                                                                  | 4.9 | 9         |
| 35 | Water uptake and optical properties of mixed organic-inorganic particles. Aerosol Science and Technology, 2021, 55, 1398-1413.                                                                                  | 3.1 | 8         |
| 36 | Quantifying the structural uncertainty of the aerosol mixing state representation in a modal model.<br>Atmospheric Chemistry and Physics, 2021, 21, 17727-17741.                                                | 4.9 | 8         |

NICOLE RIEMER

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models.<br>Journal of Computational Physics, 2016, 322, 21-32.                                                                   | 3.8 | 7         |
| 38 | Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 2018, .                                                                                          | 1.1 | 7         |
| 39 | Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion. Atmospheric Chemistry and Physics, 2017, 17, 9399-9415.                                                  | 4.9 | 4         |
| 40 | Chemistry Across Multiple Phases (CAMP) version 1.0: an integrated multiphase chemistry model.<br>Geoscientific Model Development, 2022, 15, 3663-3689.                                                                       | 3.6 | 3         |
| 41 | Mixing state evolution of agglomerating particles in an aerosol chamber: Comparison of measurements and particle-resolved simulations. Aerosol Science and Technology, 2019, 53, 1229-1243.                                   | 3.1 | 2         |
| 42 | Quantifying errors in the aerosol mixing-state index based on limited particle sample size. Aerosol<br>Science and Technology, 2020, 54, 1527-1541.                                                                           | 3.1 | 2         |
| 43 | Sensitivity of Carbonaceous Aerosol Properties to the Implementation of a Dynamic Aging<br>Parameterization in the Regional Climate Model RegCM. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, e2020JD033613. | 3.3 | 1         |
| 44 | Evaluating the Impacts of Cloud Processing on Resuspended Aerosol Particles After Cloud<br>Evaporation Using a Particleâ€Resolved Model. Journal of Geophysical Research D: Atmospheres, 2021,<br>126, e2021JD034992.         | 3.3 | 0         |
| 45 | Appreciation of Peer Reviewers for 2021. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                                                                                                         | 3.3 | 0         |