Ayansina Segun Ayangbenro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticles-assisted phytoremediation: Advances and applications. , 2022, , 155-178.		3
2	Relationship between nitrifying microorganisms and other microorganisms residing in the maize rhizosphere. Archives of Microbiology, 2022, 204, 246.	2.2	3
3	Effects of soil properties and carbon substrates on bacterial diversity of two sunflower farms. AMB Express, 2022, 12, 47.	3.0	1
4	Amplicon sequencing data profiling of bacterial community connected with the rhizospheric soil from sunflower plants. Data in Brief, 2022, 42, 108207.	1.0	1
5	Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 2021, 25, 100173.	4.7	78
6	Functional diversity of microbial communities in two contrasting maize rhizosphere soils. Rhizosphere, 2021, 17, 100282.	3.0	16
7	The diverse functional genes of maize rhizosphere microbiota assessed using shotgun metagenomics. Journal of the Science of Food and Agriculture, 2021, 101, 3193-3201.	3.5	13
8	Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. Journal of Applied Genetics, 2021, 62, 339-351.	1.9	21
9	Shotgun metagenomics reveals the functional diversity of root-associated endophytic microbiomes in maize plant. Current Plant Biology, 2021, 25, 100195.	4.7	17
10	Whole Genome Sequencing of Sunflower Root-Associated <i>Bacillus cereus</i> . Evolutionary Bioinformatics, 2021, 17, 117693432110389.	1.2	11
11	High-Throughput Sequencing Survey of Sunflower Soil. Microbiology Resource Announcements, 2021, 10, .	0.6	4
12	Genomic exploration of Bacillus thuringiensis MORWBS1.1 - candidate biocontrol agent, predicts genes for biosynthesis of zwittermicin, 4,5-DOPA dioxygenase extradiol, and quercetin 2,3-dioxygenase. Molecular Plant-Microbe Interactions, 2021, 34, 602-605.	2.6	5
13	The Immense Functional Attributes of Maize Rhizosphere Microbiome: A Shotgun Sequencing Approach. Agriculture (Switzerland), 2021, 11, 118.	3.1	7
14	Draft Genomic Analysis of Pseudomonas sp. Strain OA3, a Potential Plant Growth-Promoting Rhizospheric Bacterium. Microbiology Resource Announcements, 2021, 10, .	0.6	0
15	Genome Sequence Resource of Pseudomonas fulva HARBPS9.1—Candidate Biocontrol Agent. Phytopathology, 2021, 111, 896-898.	2.2	3
16	Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Current Genetics, 2021, 67, 891-907.	1.7	11
17	Metagenomic Insight into the Community Structure of Maize-Rhizosphere Bacteria as Predicted by Different Environmental Factors and Their Functioning within Plant Proximity. Microorganisms, 2021, 9, 1419.	3.6	15
18	Genomic analysis of a Pseudomonas strain with multiple plant growth promoting properties. Rhizosphere, 2021, 18, 100342	3.0	3

#	Article	IF	CITATIONS
19	Draft Genome Sequencing of Stenotrophomonas indicatrix BOVIS40 and Stenotrophomonas maltophilia JVB5, Two Strains with Identifiable Genes Involved in Plant Growth Promotion. Microbiology Resource Announcements, 2021, 10, e0048221.	0.6	3
20	Genomic Analysis of Endophytic Bacillus cereus T4S and Its Plant Growth-Promoting Traits. Plants, 2021, 10, 1776.	3.5	30
21	Bacterial community structure of the sunflower (<i>Helianthus annuus</i>) endosphere. Plant Signaling and Behavior, 2021, 16, 1974217.	2.4	10
22	Genome Mining of Three Plant Growth-Promoting Bacillus Species from Maize Rhizosphere. Applied Biochemistry and Biotechnology, 2021, 193, 3949-3969.	2.9	22
23	Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories. Genes, 2021, 12, 1431.	2.4	9
24	Complete genome sequence of a plant growth-promoting rhizobacterium, Bacillus sp. strain OA1, isolated from soybeans. Biocatalysis and Agricultural Biotechnology, 2021, 36, 102121.	3.1	2
25	Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability. Agriculture (Switzerland), 2021, 11, 75.	3.1	28
26	Impacts of land-use and management histories of maize fields on the structure, composition, and metabolic potentials of microbial communities. Current Plant Biology, 2021, 28, 100228.	4.7	7
27	16S rRNA gene amplicon sequence data from sunflower endosphere bacterial community. Data in Brief, 2021, 39, 107636.	1.0	2
28	Comparative study of microbial structure and functional profile of sunflower rhizosphere grown in two fields. BMC Microbiology, 2021, 21, 337.	3.3	3
29	Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Scientific Reports, 2020, 10, 19660.	3.3	81
30	Metagenomic profiling of the community structure, diversity, and nutrient pathways of bacterial endophytes in maize plant. Antonie Van Leeuwenhoek, 2020, 113, 1559-1571.	1.7	34
31	The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Frontiers in Microbiology, 2020, 11, 548037.	3.5	39
32	Shotgun Metagenomic Survey of Maize Soil Rhizobiome. Microbiology Resource Announcements, 2020, 9, .	0.6	4
33	Organic Farming Enhances the Diversity and Community Structure of Endophytic Archaea and Fungi in Maize Plant: a Shotgun Approach. Journal of Soil Science and Plant Nutrition, 2020, 20, 2587-2599.	3.4	26
34	Phytochemical screening and antimicrobial activity of Olea europaea subsp. africana against pathogenic microorganisms. Scientific African, 2020, 10, e00548.	1.5	3
35	Shotgun metagenomic sequencing data of sunflower rhizosphere microbial community in South Africa. Data in Brief, 2020, 31, 105831.	1.0	8
36	Shotgun metagenomic data of root endophytic microbiome of maize (Zea mays L.). Data in Brief, 2020, 31, 105893.	1.0	15

#	Article	IF	CITATIONS
37	Shotgun Sequencing Revealed the Microbiota of Zea mays Rhizosphere of a Former Grassland and an Intensively Cultivated Agricultural Land. Microbiology Resource Announcements, 2020, 9, .	0.6	1
38	Draft Genome Sequences of Three Rhizospheric Plant Growth-Promoting Bacteria. Microbiology Resource Announcements, 2019, 8, .	0.6	5
39	Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. Chemosphere, 2019, 231, 113-120.	8.2	60
40	Draft Genome Sequence of Pseudomonas koreensis Strain AB36, Isolated from Gold Mining Soil. Microbiology Resource Announcements, 2019, 8, .	0.6	4
41	Draft Genome Sequence of Heavy Metal-Resistant Bacillus cereus NWUAB01. Microbiology Resource Announcements, 2019, 8, .	0.6	4
42	Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 2019, 103, 1155-1166.	3.6	250
43	Metal(loid) Bioremediation: Strategies Employed by Microbial Polymers. Sustainability, 2018, 10, 3028.	3.2	45
44	Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation. Frontiers in Microbiology, 2018, 9, 1986.	3.5	121
45	A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 2017, 14, 94.	2.6	1,062
46	Bacteriological pollution indicators in Ogun River flowing through Abeokuta Metropolis. Journal of Science and Technology (Ghana), 2017, 36, 54-63.	0.5	0
47	Effect of herbs and spices (plant extracts) on rumen microbial activities: a review. Pubvet, 2016, 10, 477-486.	0.0	3
48	A review of the therapeutic properties of dithiocarbamates. F1000Research, 0, 11, 243.	1.6	1