Mariah H Meek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nonfunctional copy of the salmonid sex-determining gene (<i>sdY</i>) is responsible for the "apparent―XY females in Chinook salmon, <i>Oncorhynchus tshawytscha</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	3
2	The Coalition for Conservation Genetics: Working across organizations to build capacity and achieve change in policy and practice. Conservation Science and Practice, 2022, 4, .	2.0	17
3	Trends in ecology and conservation over eight decades. Frontiers in Ecology and the Environment, 2021, 19, 274-282.	4.0	48
4	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	4.9	96
5	Identifying hidden biocomplexity and genomic diversity in Chinook salmon, an imperiled species with a history of anthropogenic influence. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 534-547.	1.4	4
6	Attack of the PCR clones: Rates of clonality have little effect on RADâ€seq genotype calls. Molecular Ecology Resources, 2020, 20, 66-78.	4.8	16
7	Evaluating Bioinformatic Pipeline Performance for Forensic Microbiome Analysis ^{*,â€,â€;} . Journal of Forensic Sciences, 2020, 65, 513-525.	1.6	10
8	Research–management partnerships: An opportunity to integrate genetics in conservation actions. Conservation Science and Practice, 2020, 2, e218.	2.0	31
9	Dysbiosis in the Dead: Human Postmortem Microbiome Beta-Dispersion as an Indicator of Manner and Cause of Death. Frontiers in Microbiology, 2020, 11, 555347.	3.5	25
10	Linking gene expression patterns with survival studies elucidates adaptive potential in changing environments. Molecular Ecology, 2020, 29, 1031-1034.	3.9	3
11	The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Molecular Ecology Resources, 2019, 19, 795-803.	4.8	94
12	Physical defenses and herbivory vary more within plants than among plants in the tropical understory shrub <i>Piper polytrichum</i> . Botany, 2019, 97, 113-121.	1.0	9
13	Genomic Analysis Reveals Genetic Distinctiveness of the Paiute Cutthroat Trout <i>Oncorhynchus clarkii seleniris</i> . Transactions of the American Fisheries Society, 2017, 146, 1291-1302.	1.4	8
14	Sequencing improves our ability to study threatened migratory species: Genetic population assignment in California's Central Valley Chinook salmon. Ecology and Evolution, 2016, 6, 7706-7716.	1.9	24
15	Migrationâ€related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Molecular Ecology, 2016, 25, 1785-1800.	3.9	121
16	RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics, 2016, 202, 389-400.	2.9	366
17	We should not be afraid to talk about fear of failure in conservation. Biological Conservation, 2016, 194, 218-219.	4.1	1
18	Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3: Genes, Genomes, Genetics, 2015, 5, 1335-1349.	1.8	61

Mariah H Meek

#	Article	IF	CITATIONS
19	Fear of failure in conservation: The problem and potential solutions to aid conservation of extremely small populations. Biological Conservation, 2015, 184, 209-217.	4.1	60
20	Using Nextâ€Generation Sequencing to Assist a Conservation Hatchery: a Singleâ€Nucleotide Polymorphism Panel for the Genetic Management of Endangered Delta Smelt. Transactions of the American Fisheries Society, 2015, 144, 767-779.	1.4	17
21	Genetic Considerations for Sourcing Steelhead Reintroductions: Investigating Possibilities for the San Joaquin River. San Francisco Estuary and Watershed Science, 2014, 12, .	0.4	4
22	Examining the Causes and Consequences of Hybridization During Chinook Salmon Reintroductions: Using the San Joaquin River as a Restoration Case Study of Management Options. San Francisco Estuary and Watershed Science, 2014, 12, .	0.4	0
23	Genetic characterization of California's Central Valley chinook salmon. Ecology, 2014, 95, 1431-1431.	3.2	1
24	Genetic diversity and reproductive mode in two non-native hydromedusae, Maeotias marginata and Moerisia sp., in the upper San Francisco Estuary, California. Biological Invasions, 2013, 15, 199-212.	2.4	7
25	Graduate Student's Guide to Necessary Skills for Nonacademic Conservation Careers. Conservation Biology, 2013, 27, 24-34.	4.7	77
26	Abundance, size, and diel feeding ecology of Blackfordia virginica (Mayer, 1910), a non-native hydrozoan in the lower Napa and Petaluma Rivers, California (USA). Aquatic Invasions, 2013, 8, 147-156.	1.6	16
27	Climate Change Likely to Facilitate the Invasion of the Non-Native Hydroid, Cordylophora caspia, in the San Francisco Estuary. PLoS ONE, 2012, 7, e46373.	2.5	11
28	Trophic ecology of two non-native hydrozoan medusae in the upper San Francisco Estuary. Marine and Freshwater Research, 2011, 62, 952.	1.3	15
29	Life history and population dynamics of Moerisia sp., a non-native hydrozoan, in the upper San Francisco Estuary (U.S.A.). Estuarine, Coastal and Shelf Science, 2011, 94, 48-55.	2.1	7
30	Ecological insights into the polyp stage of non-native hydrozoans in the San Francisco Estuary. Aquatic Ecology, 2011, 45, 151-161.	1.5	20
31	Isolation and characterization of microsatellite loci in two non-native hydromedusae in the San Francisco Estuary: MaeotiasÂmarginata and Moerisia sp Conservation Genetics Resources, 2009, 1, 205-208.	0.8	1
32	Black Sea Jellyfish: Shocking Newcomers to Suisun Marsh. Frontiers for Young Minds, 0, 9, .	0.8	0