Sara Hernando-Amado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/393658/publications.pdf

Version: 2024-02-01

33 papers

2,456 citations

20 h-index 32 g-index

36 all docs 36 docs citations

36 times ranked 3314 citing authors

#	Article	IF	CITATIONS
1	Convergent phenotypic evolution towards fosfomycin collateral sensitivity of <i>Pseudomonas aeruginosa</i> antibioticâ€resistant mutants. Microbial Biotechnology, 2022, 15, 613-629.	4.2	19
2	Evolution under low antibiotic concentrations: a risk for the selection of ⟨i⟩Pseudomonas aeruginosa⟨/i⟩ multidrugâ€resistant mutants in nature. Environmental Microbiology, 2022, 24, 1279-1293.	3.8	22
3	Rapid Decline of Ceftazidime Resistance in Antibiotic-Free and Sublethal Environments Is Contingent on Genetic Background. Molecular Biology and Evolution, 2022, 39, .	8.9	16
4	Mutational background influences <i>P. aeruginosa</i> ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109370119.	7.1	18
5	Wildlife and Antibiotic Resistance. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	23
6	Evolution of Habitat-Dependent Antibiotic Resistance in Pseudomonas aeruginosa. Microbiology Spectrum, 2022, 10, .	3.0	11
7	Discovery of inhibitors of <scp><i>Pseudomonas aeruginosa</i></scp> virulence through the search for naturalâ€ike compounds with a dual role as inducers and substrates of efflux pumps. Environmental Microbiology, 2021, 23, 7396-7411.	3.8	16
8	Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. International Journal of Molecular Sciences, 2021, 22, 8080.	4.1	33
9	Emergence of intrinsically resistant Gram-negative bacteria with an environmental primary habitat. International Journal of Antimicrobial Agents, 2021, 58, 21002296.	2.5	0
10	Pseudomonas aeruginosa: an antibiotic resilient pathogen with environmental origin. Current Opinion in Microbiology, 2021, 64, 125-132.	5.1	38
11	Rapid and robust evolution of collateral sensitivity in <i>Pseudomonas aeruginosa </i> antibiotic-resistant mutants. Science Advances, 2020, 6, eaba5493.	10.3	33
12	Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Frontiers in Microbiology, 2020, 11, 1914.	3.5	64
13	Naringenin Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on Its Time-Dependent Competition With N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Frontiers in Molecular Biosciences, 2020, 7, 25.	3.5	40
14	Evolutionary landscapes of Pseudomonas aeruginosa towards ribosome-targeting antibiotic resistance depend on selection strength. International Journal of Antimicrobial Agents, 2020, 55, 105965.	2.5	16
15	Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 2019, 4, 1432-1442.	13.3	614
16	Novel Inducers of the Expression of Multidrug Efflux Pumps That Trigger <i>Pseudomonas aeruginosa</i> Transient Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	20
17	Antibiotic Resistance Evolution Is Contingent on the Quorum-Sensing Response in Pseudomonas aeruginosa. Molecular Biology and Evolution, 2019, 36, 2238-2251.	8.9	40
18	Analysis of the Pseudomonas aeruginosa Aminoglycoside Differential Resistomes Allows Defining Genes Simultaneously Involved in Intrinsic Antibiotic Resistance and Virulence. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17

#	Article	IF	CITATIONS
19	Antimicrobial resistance: A multifaceted problem with multipronged solutions. MicrobiologyOpen, 2019, 8, e945.	3.0	32
20	Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 2019, 4, 112-123.	13.3	129
21	Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. Frontiers in Genetics, 2018, 9, 451.	2.3	52
22	The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opinion on Drug Discovery, 2018, 13, 919-931.	5.0	30
23	Mutation-Driven Evolution of Pseudomonas aeruginosa in the Presence of either Ceftazidime or Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	83
24	Fitness costs associated with the acquisition of antibiotic resistance. Essays in Biochemistry, 2017, 61, 37-48.	4.7	62
25	Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms, 2016, 4, 14.	3. 6	486
26	Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Frontiers in Microbiology, 2016, 7, 1483.	3.5	180
27	Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resistance Updates, 2016, 28, 13-27.	14.4	139
28	Use of phenotype microarrays to study the effect of acquisition of resistance to antimicrobials in bacterial physiology. Research in Microbiology, 2016, 167, 723-730.	2.1	5
29	The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Medicinal Chemistry, 2016, 8, 1133-1151.	2.3	17
30	Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2014, 69, 2972-2978.	3.0	26
31	A Function of SmeDEF, the Major Quinolone Resistance Determinant of Stenotrophomonas maltophilia, Is the Colonization of Plant Roots. Applied and Environmental Microbiology, 2014, 80, 4559-4565.	3.1	75
32	The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biology, 2012, 12, 202.	3.6	54
33	Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta, 2011, 234, 391-403.	3.2	45