List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935935/publications.pdf Version: 2024-02-01

Κενιι Δρακι

#	Article	IF	CITATIONS
1	Development of Highâ€Efficiency Solar Cell Modules for Photovoltaicâ€Powered Vehicles. Solar Rrl, 2022, 6, 2100429.	5.8	12
2	Curve correction of vehicleâ€integrated photovoltaics using statistics on commercial car bodies. Progress in Photovoltaics: Research and Applications, 2022, 30, 152-163.	8.1	17
3	Practical and simplified measurements for representative photovoltaic array temperatures robust to climate variations. Solar Energy, 2022, 231, 243-251.	6.1	2
4	Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles. Renewable and Sustainable Energy Reviews, 2022, 158, 112109.	16.4	26
5	Impact and recent approaches of high-efficiency solar cell modules for PV-powered vehicles. Japanese Journal of Applied Physics, 2022, 61, SC0802.	1.5	7
6	Facilitating vehicle-integrated photovoltaics by considering the radius of curvature of the roof surface for solar cell coverage. Cleaner Engineering and Technology, 2022, 7, 100446.	4.0	9
7	Development of highâ€efficiency and lowâ€cost solar cells for PVâ€powered vehicles application. Progress in Photovoltaics: Research and Applications, 2021, 29, 684-693.	8.1	48
8	Analysis for nonradiative recombination loss and radiation degradation of Si space solar cells. Progress in Photovoltaics: Research and Applications, 2021, 29, 98-108.	8.1	5
9	Analysis for non-radiative recombination and resistance loss in chalcopyrite and kesterite solar cells. Japanese Journal of Applied Physics, 2021, 60, SBBF05.	1.5	7
10	Stretchable micro-scale concentrator photovoltaic module with 15.4% efficiency for three-dimensional curved surfaces. Communications Materials, 2021, 2, .	6.9	12
11	Importance of Developing Photovoltaics-Powered Vehicles. Energy and Power Engineering, 2021, 13, 147-162.	0.8	16
12	Potential of Si Tandem Solar Cell Modules for PV-Powered Vehicles. , 2021, , .		2
13	Performance evaluation and spectrum-based analysis of a wall-mounted photovoltaic system for zero-energy building. Renewable Energy, 2021, 174, 147-156.	8.9	8
14	Analysis of temperature coefficients and their effect on efficiency of solar cell modules for photovoltaics-powered vehicles. Journal Physics D: Applied Physics, 2021, 54, 504002.	2.8	9
15	Evaluating the Output of a Car-Mounted Photovoltaic Module Under Driving Conditions. IEEE Journal of Photovoltaics, 2021, 11, 1299-1304.	2.5	16
16	How did the knowledge of CPV contribute to the standardization activity of VIPV?. AIP Conference Proceedings, 2020, , .	0.4	2
17	Super-multi-junction solar cells - Device configuration with the potential for more than 50% annual energy conversion efficiency (CPV). AIP Conference Proceedings, 2020, , .	0.4	1
18	Nearly 30%-efficient low-concentration static photovoltaic modules with IMM triple-junction solar cells. Applied Physics Express, 2020, 13, 077001.	2.4	2

#	Article	IF	CITATIONS
19	The Outdoor Field Test and Energy Yield Model of the Four-Terminal on Si Tandem PV Module. Applied Sciences (Switzerland), 2020, 10, 2529.	2.5	5
20	Overview of Si Tandem Solar Cells and Approaches to PV-Powered Vehicle Applications. MRS Advances, 2020, 5, 441-450.	0.9	11
21	Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions. Applied Sciences (Switzerland), 2020, 10, 703.	2.5	19
22	Measurement and Modeling of 3D Solar Irradiance for Vehicle-Integrated Photovoltaic. Applied Sciences (Switzerland), 2020, 10, 872.	2.5	40
23	Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars. Energy and Power Engineering, 2020, 12, 375-395.	0.8	28
24	Importance of Developing High-Efficiency Solar Cells for PV-Powered Vehicles. , 2020, , .		0
25	A Mesh Downsampling Algorithm for Equivalent Circuit Network Simulation of Multi-Junction Solar Cells. IEEE Access, 2019, 7, 97208-97215.	4.2	3
26	Why and how does car-roof PV create 50 GW/year of new installations? Also, why is a static CPV suitable to this application?. AIP Conference Proceedings, 2019, , .	0.4	8
27	Present status and main guidelines of IEC 62787: "Concentrator photovoltaic (CPV) solar cells and cell-on-carrier (CoC) assemblies – qualification― AIP Conference Proceedings, 2019, , .	0.4	1
28	Demonstration of the performance static low-concentration module using hybrid lens arrays. AIP Conference Proceedings, 2019, , .	0.4	1
29	Super-Multi-Junction Solar Cells—Device Configuration with the Potential for More Than 50% Annual Energy Conversion Efficiency (Non-Concentration). Applied Sciences (Switzerland), 2019, 9, 4598.	2.5	10
30	Standardization of the CPV technology in 2019 – The path to new CPV technologies. AlP Conference Proceedings, 2019, , .	0.4	4
31	Improvement of the spectral sensitivity of CPV by enhancing luminescence coupling and fine-tuning to the bottom-bandgap matched to local atmospheric conditions. AIP Conference Proceedings, 2019, , .	0.4	4
32	Impact of Nonplanar Panels on Photovoltaic Power Generation in the Case of Vehicles. IEEE Journal of Photovoltaics, 2019, 9, 1721-1726.	2.5	24
33	Analysis of nonradiative recombination in quantum dot solar cells and materials. Progress in Photovoltaics: Research and Applications, 2019, 27, 971-977.	8.1	14
34	Design of lowâ€concentration static IIIâ€V/Si partial CPV module with 27.3% annual efficiency for carâ€roof application. Progress in Photovoltaics: Research and Applications, 2019, 27, 501-510.	8.1	24
35	A mobile multipyranometer array for the assessment of solar irradiance incident on a photovoltaic-powered vehicle. Solar Energy, 2019, 184, 84-90.	6.1	28
36	Rough and Straightforward Estimation of the Mismatching Loss by Partial Shading of the PV Modules Installed on an Urban Area or Car-Roof. , 2019, , .		10

#	Article	IF	CITATIONS
37	Curve Correction of the Energy Yield by Flexible Photovoltaics for VIPV and BIPV Applications Using a Simple Correction Factor. , 2019, , .		6
38	Proposals for Accelerating Photovoltaics Installations in Japan and Further Developments of Science and Technologies of Photovoltaics. , 2019, , .		0
39	Demonstration of High Efficiency Static Low-Concentration Photovoltaic Module Using Hybrid Lens Arrays. , 2019, , .		0
40	Demonstration of High Efficiency Static Low-Concentration Photovoltaic Module Using Hybrid Lens Arrays. , 2019, , .		0
41	Modeling and Standardization Researches and Discussions of the Car-roof PV through International Web Meetings. , 2019, , .		4
42	Analysis for Radiation Degradation of Advanced Si Space Solar Cells. , 2019, , .		3
43	Design of the Micro-Köhler Concentrator Optics for CPV Application. , 2019, , .		1
44	Alignment Tolerance Control of the Micro CPV Array Using Monte Carlo Methods. , 2019, , .		2
45	Super-Multi-Junction Solar Cells, a New Configuration of the Robust and High-Efficiency Solar Cell and Its Application – Operation Model Based on the Annual Monitoring of the Multi-Junction PV Modules. , 2019, , .		0
46	The potential for concentrator photovoltaics: A feasibility study in India. Progress in Photovoltaics: Research and Applications, 2019, 27, 316-327.	8.1	12
47	Performance Analysis and Fault Diagnosis Method for Concentrator Photovoltaic Modules. IEEE Journal of Photovoltaics, 2019, 9, 424-430.	2.5	7
48	Design and Evaluation of a III–V/Si Partial CPV Module for Maximization of Power Generation per Unit Module Area. IEEE Journal of Photovoltaics, 2019, 9, 147-153.	2.5	19
49	Concentrated Solar Cells. , 2019, , 1-34.		1
50	Electrical conduction of Si/indium tin oxide/Si junctions fabricated by surface activated bonding. Japanese Journal of Applied Physics, 2018, 57, 02BE03.	1.5	4
51	Analysis of future generation solar cells and materials. Japanese Journal of Applied Physics, 2018, 57, 04FS03.	1.5	20
52	A review of recent progress in heterogeneous silicon tandem solar cells. Journal Physics D: Applied Physics, 2018, 51, 133002.	2.8	103
53	Analysis for efficiency potential of highâ€efficiency and nextâ€generation solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 543-552.	8.1	49
54	The possibility of the static LCPV to mechanical-stack III-V//Si module. AIP Conference Proceedings, 2018, , .	0.4	8

#	Article	IF	CITATIONS
55	Curve-Correction Factor for Characterization of the Output of a Three-Dimensional Curved Photovoltaic Module on a Car Roof. Coatings, 2018, 8, 432.	2.6	27
56	Design and Evaluation of Low-concentration Static III-V/Si Partial CPV Module for Car-rooftop Application. , 2018, , .		8
57	Optimization of the Partially Radiative-coupling Multi-junction Solar Cells Considering Fluctuation of Atmospheric Conditions. , 2018, , .		6
58	Toward the Standardization of the Car-roof PV – The challenge to the 3-D Sunshine Modeling and Rating of the 3-D Continuously Curved PV Panel. , 2018, , .		13
59	Achieving High Efficiency Static Low-Concentration Photovoltaic Module Using Hybrid Lens Arrays. , 2018, , .		5
60	Standardization of the CPV and car-roof PV technology in 2018 – Where are we going to go?. AIP Conference Proceedings, 2018, , .	0.4	15
61	Evaluation and optimization of coating for wide acceptance angle concentrator photovoltaic module. Japanese Journal of Applied Physics, 2018, 57, 08RD02.	1.5	1
62	Verification of uncertainty in CPVâ \in Ms outdoor performance. , 2018, , .		3
63	Analysis of fluctuation of atmospheric parameters and its impact on performance of CPV. AIP Conference Proceedings, 2018, , .	0.4	9
64	To Do List for Research and Development and International Standardization to Achieve the Goal of Running a Majority of Electric Vehicles on Solar Energy. Coatings, 2018, 8, 251.	2.6	65
65	Achieving wide-acceptance angle and high on-axis performance static low-concentration module using hybrid lens arrays. AIP Conference Proceedings, 2018, , .	0.4	3
66	Analysis for efficiency potential of crystalline Si solar cells. Journal of Materials Research, 2018, 33, 2621-2626.	2.6	11
67	Electrical properties of GaAs//indium tin oxide/Si junctions for III–V-on-Si hybrid multijunction cells. Japanese Journal of Applied Physics, 2018, 57, 08RD05.	1.5	4
68	GaAs/Indium Tin Oxide/Si Bonding Junctions for III-V-on-Si Hybrid Multijunction Cells With Low Series Resistance. IEEE Journal of Photovoltaics, 2018, , 1-8.	2.5	12
69	Opportunities for breaking an energy generation limit of photovoltaic using multijunction and super-multijunction cells. , 2018, , .		5
70	Analysis of impact to optical environment of the land by flat-plate and array of tracking PV panels. Solar Energy, 2017, 144, 278-285.	6.1	6
71	Bandgaps of multi-junction solar cells potentially determined at the sun height of the culmination on the winter solstice. Solar Energy, 2017, 153, 445-453.	6.1	10
72	1-D and 2-D Monte Carlo simulations for analysis of CPV module characteristics including the acceptance angle impacted by assembly errors. Solar Energy, 2017, 147, 448-454.	6.1	14

#	Article	IF	CITATIONS
73	Static concentrator photovoltaics for automotive applications. Solar Energy, 2017, 146, 523-531.	6.1	95
74	Experimental analysis and simulation of a production line for <scp>CPV</scp> modules: impact of defects, misalignments, and binning of receivers. Energy Science and Engineering, 2017, 5, 257-269.	4.0	12
75	Monte Carlo simulation to analyze the performance of CPV modules. AIP Conference Proceedings, 2017, , .	0.4	2
76	Efficiency potential and recent activities of high-efficiency solar cells. Journal of Materials Research, 2017, 32, 3445-3457.	2.6	47
77	111 sun concentrator photovoltaic module with wide acceptance angle that can efficiently operate using 30-min intermittent tracking system. Japanese Journal of Applied Physics, 2017, 56, 092301.	1.5	3
78	Optical and thermal simulation for wide acceptance angle CPV module. AIP Conference Proceedings, 2017, , .	0.4	5
79	Estimation of conversion efficiency for partially static concentrator with III-V on Si solar cell. AIP Conference Proceedings, 2017, , .	0.4	5
80	Design of the partial concentrator lens for III-V on Si static concentration. AIP Conference Proceedings, 2017, , .	0.4	4
81	Impact of the atmospheric conditions to the bandgap engineering of multi-junction cells for optimization of the annual energy yield of CPV. AIP Conference Proceedings, 2017, , .	0.4	11
82	Electrical conduction of Si/ITO/Si junctions fabricated by surface activated bonding. , 2017, , .		1
83	Failure analysis on lattice matched GaInP/Ga(In)As/Ge commercial concentrator solar cells after temperature accelerated life tests. Progress in Photovoltaics: Research and Applications, 2017, 25, 97-112.	8.1	14
84	Towards creation of mobility society using solar energy. , 2017, , .		6
85	Outdoor validation of the 30 minutes intermittent tracking of 100 x CPV. AIP Conference Proceedings, 2017, , .	0.4	3
86	Is it CPV? Yes, but it is a partial CPV. AIP Conference Proceedings, 2017, , .	0.4	1
87	Quantifying the potential of III-V/Si partial concentrator by a statistical approach. AIP Conference Proceedings, 2017, , .	0.4	3
88	Design Arithmetic of the Lateral III-V / Si Hybrid Module. , 2017, , .		1
89	Generalized Numerical Design of Axially-asymmetrical and Grid-arranged Static CPV Array for Maximizing Annual Energy Generation. , 2017, , .		0
90	Design and Evaluation of Partial Concentration III-V/Si Module with Enhanced Diffuse Sunlight Transmission. , 2017, , .		3

#	Article	IF	CITATIONS
91	Recent results for concentrator photovoltaics in Japan. Japanese Journal of Applied Physics, 2016, 55, 04EA05.	1.5	18
92	Annex: CPV Modules and Systems from Daido Steel. , 2016, , 413-418.		1
93	Assessing material qualities and efficiency limits of III-V on silicon solar cells using external radiative efficiency. Progress in Photovoltaics: Research and Applications, 2016, 24, 1310-1318.	8.1	18
94	Possibility of static low concentrator PV optimized for vehicle installation. AIP Conference Proceedings, 2016, , .	0.4	19
95	Which is optimum tracker allocation, checkerboard or rectangular grid?. AIP Conference Proceedings, 2016, , .	0.4	2
96	Possibility of solar station to EV. AIP Conference Proceedings, 2016, , .	0.4	8
97	Study on tolerance control for optical alignment of CPV modules using a Monte Carlo simulation. AIP Conference Proceedings, 2016, , .	0.4	0
98	Fabrication and performance analysis of a mechanical stack InGaP/GaAs//Si solar cell. , 2016, , .		4
99	Optimization of static concentrator photovoltaics with aspherical lens for automobile. , 2016, , .		7
100	Assessing material qualities and efficiency limits of III-V on silicon solar cells using external radiative efficiency. , 2016, , .		1
101	Design and Development of Dome-Shaped Fresnel Lens. IEEE Journal of Photovoltaics, 2016, 6, 1339-1344.	2.5	7
102	Next environment-friendly cars: Application of solar power as automobile energy source. , 2016, , .		17
103	Durability of polymeric encapsulation materials in a PMMA/glass concentrator photovoltaic system. Progress in Photovoltaics: Research and Applications, 2016, 24, 1385-1409.	8.1	11
104	Off-Axis Characteristics of CPV Modules Result From Lens-Cell Misalignment—Measurement and Monte Carlo Simulation. IEEE Journal of Photovoltaics, 2016, 6, 1353-1359.	2.5	13
105	Analysis of impact to optical environment of the land by CPV. AIP Conference Proceedings, 2016, , .	0.4	1
106	Intermittent tracking (30 minutes interval) using a wide acceptance CPV module. AIP Conference Proceedings, 2016, , .	0.4	8
107	Optimization of Land Use for a Multitracker System Using a Given Geometrical Site Condition. IEEE Journal of Photovoltaics, 2016, 6, 960-966.	2.5	9
108	Potential and Activities of III-V/Si Tandem Solar Cells. ECS Journal of Solid State Science and Technology, 2016, 5, Q68-Q73.	1.8	16

#	Article	IF	CITATIONS
109	Temperature accelerated life test on commercial concentrator III–V tripleâ€junction solar cells and reliability analysis as a function of the operating temperature. Progress in Photovoltaics: Research and Applications, 2015, 23, 559-569.	8.1	49
110	Characterization of CPV arrays based on differences on their thermal resistances. AIP Conference Proceedings, 2014, , .	0.4	13
111	Module optical analyzer: Identification of defects on the production line. AIP Conference Proceedings, 2014, , .	0.4	12
112	Solving optimization problem of space factor of multiple CPV trackers using "butterfly approach― , 2014, , .		7
113	Influence of Dirt on the Lens and Yellow Sand to Electricity Generation Characteristics of a Concentrator PV System. IEEJ Transactions on Power and Energy, 2014, 134, 436-442.	0.2	0
114	Durability of polymeric encapsulation materials for concentrating photovoltaic systems. Progress in Photovoltaics: Research and Applications, 2013, 21, 631-651.	8.1	22
115	Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan. Progress in Photovoltaics: Research and Applications, 2013, 21, 1598-1610.	8.1	56
116	Thermal transfer simulating for concentrator photovoltaic module under concentration condition. , 2013, , .		1
117	Heat reduction of concentrator photovoltaic module using high radiation coating. Surface and Coatings Technology, 2013, 215, 472-475.	4.8	40
118	Preface for the 9th International Conference on Concentrating Photovoltaic Systems (CPV-9). , 2013, , .		0
119	Thermal transfer simulation for concentrator photovoltaic receiver under concentration condition. , 2013, , .		2
120	Evaluation of the reliability of commercial concentrator triple-junction solar cells by means of accelerated life tests (ALT). AIP Conference Proceedings, 2013, , .	0.4	7
121	Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system. , 2013, , .		8
122	Reduction in Operating Temperature of 25 Series-Connected 820X Concentrator Photovoltaic Module. Japanese Journal of Applied Physics, 2013, 52, 04CR03.	1.5	6
123	"Durability of Polymeric Encapsulation Materials in a PMMA/glass Concentrating Photovoltaic System― , 2013, , .		4
124	Effect of Anti-Soiling Layer Coated on Poly(methyl methacrylate) for Concentrator Photovoltaic Modules. Japanese Journal of Applied Physics, 2012, 51, 10ND11.	1.5	5
125	Influence of temperature distribution on 25 series-connected 820X CPV module output during outdoor operation. , 2012, , .		4
126	Two-Dimensional Mapping of Localized Characteristics of Concentrator Photovoltaic Module. Materials Science Forum, 2012, 725, 187-190.	0.3	0

#	Article	IF	CITATIONS
127	Two interactive and practical methods for optimization of tracker allocation in a given land. AIP Conference Proceedings, 2012, , .	0.4	8
128	Impact of volcanic ash on CPV system in Miyazaki Japan. AIP Conference Proceedings, 2012, , .	0.4	3
129	Fatigue failure of concentrator III-V solar cells - Does forward bias current injection really kill III-V CPV cells?. AIP Conference Proceedings, 2012, , .	0.4	3
130	Photovoltaic performance of the dome-shaped Fresnel-K $ ilde{A}$ ¶hler concentrator. , 2012, , .		6
131	Temperature distribution in 820X CPV module during outdoor operation. AIP Conference Proceedings, 2012, , .	0.4	14
132	Sandblasting durability of acrylic and glass Fresnel lenses for concentrator photovoltaic modules. Solar Energy, 2012, 86, 3021-3025.	6.1	19
133	Design and development of 35 % efficient and 1000X CPV module with sufficient optical alignment tolerance. , 2012, , .		10
134	Proposal of an energy rating method fair to countries of lower irradiance resources. , 2012, , .		0
135	Effect of Anti-Soiling Layer Coated on Poly(methyl methacrylate) for Concentrator Photovoltaic Modules. Japanese Journal of Applied Physics, 2012, 51, 10ND11.	1.5	5
136	Lightning test for concentrator photovoltaic system. , 2011, , .		4
137	Anti-soiling layer coarted on PMMA Fresnel lens for concentrator photovoltaic modules. , 2011, , .		2
138	Present and Future of High Efficiency Multi-Junction Solar Cells. , 2011, , .		3
139	ARE ELECTRO-LUMINESCENCE DEFECTS IN CONCENTRATOR III-V CELLS RESPONSIBLE TO THERMAL RUNAWAY AND SUDDEN DEATH?. AIP Conference Proceedings, 2011, , .	0.4	7
140	Output Comparison of CPV and Flat-Plate Systems in Japanese Meteorological Condition. , 2011, , .		4
141	What Is the Most Appropriate and Practical Index to Represent Spectrum Sensitivity of CPV?. AIP Conference Proceedings, 2010, , .	0.4	2
142	Performance of the 30 KW CPV System Installed in Coastal Area in Japan. , 2010, , .		0
143	Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system. Applied Energy, 2010, 87, 2797-2807.	10.1	95
144	A New Simple Model of Direct Spectral Irradiance with Easily Observable Atmospheric Parameters. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5, 548-552.	1.4	0

#	Article	IF	CITATIONS
145	Analysis of shadow by HCPV panels for agriculture applications. , 2010, , .		4
146	30 kW Concentrator Photovoltaic System Using Dome-shaped Fresnel Lenses. Optics Express, 2010, 18, A53.	3.4	67
147	Low-Concentration Linear-Array Photovoltaic System with Two-axis Sun Tracking. IEEJ Transactions on Power and Energy, 2009, 129, 1154-1155.	0.2	2
148	Novel materials for high-efficiency III–V multi-junction solar cells. Solar Energy, 2008, 82, 173-180.	6.1	143
149	Present and future of super high efficiency multi-junction solar cells. Proceedings of SPIE, 2008, , .	0.8	13
150	Achievement of 27% efficient and 200Wp concentrator module and the technological roadmap toward realization of more than 31% efficient modules. Solar Energy Materials and Solar Cells, 2006, 90, 3312-3319.	6.2	13
151	Super high-efficiency multi-junction and concentrator solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 3068-3077.	6.2	147
152	Multi-junction III–V solar cells: current status and future potential. Solar Energy, 2005, 79, 78-85.	6.1	340
153	Development of concentrator modules with dome-shaped Fresnel lenses and triple-junction concentrator cells. Progress in Photovoltaics: Research and Applications, 2005, 13, 513-527.	8.1	49
154	Japanese programs on novel concepts in PV. Semiconductors, 2004, 38, 956-961.	0.5	3
155	Sunshine environment and spectrum analysis for concentrator PV systems in Japan. Solar Energy Materials and Solar Cells, 2003, 75, 715-721.	6.2	4
156	Extended distributed model for analysis of non-ideal concentration operation. Solar Energy Materials and Solar Cells, 2003, 75, 467-473.	6.2	35
157	Influences of spectrum change to 3-junction concentrator cells. Solar Energy Materials and Solar Cells, 2003, 75, 707-714.	6.2	56
158	Novel equivalent circuit model and statistical analysis in parameters identification. Solar Energy Materials and Solar Cells, 2003, 75, 457-466.	6.2	26
159	Generation and annihilation of boron–oxygen related defects in boron-doped Czochralski-grown Si solar cells. Journal of Applied Physics, 2002, 91, 4853-4856.	2.5	7
160	Characteristics of GaAs-based concentrator cells. Solar Energy Materials and Solar Cells, 2001, 66, 559-565.	6.2	28
161	An Si concentrator cell by single photolithography process. Solar Energy Materials and Solar Cells, 2001, 65, 437-443.	6.2	8
162	Role of the impurities in production rates of radiation-induced defects in silicon materials and solar cells. Journal of Applied Physics, 2001, 90, 1170-1178.	2.5	58

#	Article	IF	CITATIONS
163	Elastic, Piezoelectric, Acousto-Optic and Electro-Optic Properties of Li ₂ B ₄ O ₇ . Japanese Journal of Applied Physics, 1985, 24, 25.	1.5	77