Vickery L Arcus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry, 2022, 158, 131-141.	3.5	10
2	Sensing Enzyme Activation Heat Capacity at the Single-Molecule Level Using Gold-Nanorod-Based Optical Whispering Gallery Modes. ACS Applied Nano Materials, 2021, 4, 4576-4583.	5.0	20
3	pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from <i>Geobacillus thermoglucosidasius</i> . Biochemistry, 2021, 60, 1573-1577.	2.5	5
4	Evolution of dynamical networks enhances catalysis in a designer enzyme. Nature Chemistry, 2021, 13, 1017-1022.	13.6	60
5	Separating the temperature response of soil respiration derived from soil organic matter and added labile carbon compounds. Geoderma, 2021, 400, 115128.	5.1	13
6	How close are we to the temperature tipping point of the terrestrial biosphere?. Science Advances, 2021, 7, .	10.3	102
7	Chemical Mapping Exposes the Importance of Active Site Interactions in Governing the Temperature Dependence of Enzyme Turnover. ACS Catalysis, 2021, 11, 14854-14863.	11.2	6
8	PhoH2 proteins couple RNA helicase and RNAse activities. Protein Science, 2020, 29, 883-892.	7.6	10
9	Post-transcriptional modulation of the SigF regulon in Mycobacterium smegmatis by the PhoH2 toxin-antitoxin. PLoS ONE, 2020, 15, e0236551.	2.5	2
10	The Inflection Point Hypothesis: The Relationship between the Temperature Dependence of Enzyme-Catalyzed Reaction Rates and Microbial Growth Rates. Biochemistry, 2020, 59, 3562-3569.	2.5	20
11	Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS Journal, 2020, 287, 3777-3793.	4.7	6
12	Enzyme evolution and the temperature dependence of enzyme catalysis. Current Opinion in Structural Biology, 2020, 65, 96-101.	5.7	54
13	Contrasting temperature responses of soil respiration derived from soil organic matter and added plant litter. Biogeochemistry, 2020, 150, 45-59.	3.5	17
14	Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates. Annual Review of Biophysics, 2020, 49, 163-180.	10.0	74
15	Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agriculture, Ecosystems and Environment, 2019, 285, 106620.	5.3	21
16	Tackling tuberculosis in the indigenous people of New Zealand. Lancet Public Health, The, 2019, 4, e496.	10.0	5
17	The three dimensional structure of Bovine Salivary Protein 30b (BSP30b) and its interaction with specific rumen bacteria. PLoS ONE, 2019, 14, e0206709.	2.5	1
18	Dispersal of Mycobacterium tuberculosis Driven by Historical European Trade in the South Pacific. Frontiers in Microbiology, 2019, 10, 2778.	3.5	28

VICKERY L ARCUS

#	Article	IF	CITATIONS
19	Uncovering the Relationship between the Change in Heat Capacity for Enzyme Catalysis and Vibrational Frequency through Isotope Effect Studies. ACS Catalysis, 2018, 8, 5340-5349.	11.2	13
20	Dynamical origins of heat capacity changes in enzyme-catalysed reactions. Nature Communications, 2018, 9, 1177.	12.8	64
21	Macromolecular rate theory (<scp>MMRT</scp>) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Global Change Biology, 2018, 24, 1538-1547.	9.5	35
22	Crystal structure of an inferred ancestral bacterial pyruvate decarboxylase. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 179-186.	0.8	3
23	Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism. Protein Science, 2017, 26, 1627-1638.	7.6	11
24	Rapid molecular diagnosis of the Mycobacterium tuberculosis Rangipo strain responsible for the largest recurring TB cluster in New Zealand. Diagnostic Microbiology and Infectious Disease, 2017, 88, 138-140.	1.8	8
25	Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5′-Methylthioadenosine Phosphorylase. ACS Chemical Biology, 2017, 12, 464-473.	3.4	17
26	A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS Journal, 2017, 284, 2829-2842.	4.7	39
27	Crystal structure of pyruvate decarboxylase from <i>Zymobacter palmae</i> . Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 700-706.	0.8	8
28	Structure and Function of AmtR in Mycobacterium smegmatis: Implications for Post-Transcriptional Regulation of Urea Metabolism through a Small Antisense RNA. Journal of Molecular Biology, 2016, 428, 4315-4329.	4.2	8
29	Interdomain Conformational Changes Provide Allosteric Regulation en Route to Chorismate. Journal of Biological Chemistry, 2016, 291, 21836-21847.	3.4	22
30	On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry, 2016, 55, 1681-1688.	2.5	233
31	Prediction of the substrate for nonribosomal peptide synthetase (<scp>NRPS</scp>) adenylation domains by virtual screening. Proteins: Structure, Function and Bioinformatics, 2015, 83, 2052-2066.	2.6	19
32	Biotechnological Uses of Archaeal Proteins. Archaea, 2015, 2015, 1-2.	2.3	1
33	Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. Journal of the Royal Society Interface, 2015, 12, 20150036.	3.4	26
34	The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis, 2015, 95, 385-394.	1.9	22
35	Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions. FEBS Letters, 2015, 589, 2200-2206.	2.8	19
36	Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. Journal of Molecular Evolution, 2015, 81, 110-120.	1.8	16

VICKERY L ARCUS

#	Article	IF	CITATIONS
37	Toward More Accurate Ancestral Protein Genotype–Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees. Molecular Biology and Evolution, 2015, 32, 13-22.	8.9	43
38	Thermodynamic theory explains the temperature optima of soil microbial processes and high <i>Q</i> ₁₀ values at low temperatures. Global Change Biology, 2014, 20, 3578-3586.	9.5	163
39	Mycobacterium tuberculosis Rv2179c Protein Establishes a New Exoribonuclease Family with Broad Phylogenetic Distribution. Journal of Biological Chemistry, 2014, 289, 2139-2147.	3.4	13
40	Tracking Molecular Recognition at the Atomic Level with a New Protein Scaffold Based on the OB-Fold. PLoS ONE, 2014, 9, e86050.	2.5	20
41	Ribonucleases in bacterial toxin–antitoxin systems. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 523-531.	1.9	77
42	Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed Rates. ACS Chemical Biology, 2013, 8, 2388-2393.	3.4	164
43	Structure and function of an acetyl xylan esterase (Est2A) from the rumen bacterium <i>Butyrivibrio proteoclasticus</i> . Proteins: Structure, Function and Bioinformatics, 2013, 81, 911-917.	2.6	21
44	Infinite stacking of alternating polyfluoroaryl rings and bromide anions. CrystEngComm, 2013, 15, 9841.	2.6	13
45	Type II Toxin-Antitoxins: Structural and Functional Aspects of Type II Loci in Mycobacteria. , 2013, , 137-156.		Ο
46	A VapBC Toxin-Antitoxin Module Is a Posttranscriptional Regulator of Metabolic Flux in Mycobacteria. Journal of Bacteriology, 2012, 194, 2189-2204.	2.2	75
47	Toxin-Antitoxin Systems of Mycobacterium smegmatis Are Essential for Cell Survival. Journal of Biological Chemistry, 2012, 287, 5340-5356.	3.4	59
48	On the Origin and Evolution of Thermophily: Reconstruction of Functional Precambrian Enzymes from Ancestors of Bacillus. Molecular Biology and Evolution, 2012, 29, 825-835.	8.9	83
49	The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection. PLoS ONE, 2012, 7, e38542.	2.5	37
50	Determination of ribonuclease sequence-specificity using Pentaprobes and mass spectrometry. Rna, 2012, 18, 1267-1278.	3.5	39
51	Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry, 2012, 75, 128-139.	2.9	42
52	Expression, purification and characterisation of GIGANTEA: A circadian clock-controlled regulator of photoperiodic flowering in plants. Protein Expression and Purification, 2011, 76, 197-204.	1.3	11
53	VapC Toxins from Mycobacterium tuberculosis Are Ribonucleases that Differentially Inhibit Growth and Are Neutralized by Cognate VapB Antitoxins. PLoS ONE, 2011, 6, e21738.	2.5	78
54	The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Engineering, Design and Selection, 2011, 24, 33-40.	2.1	148

VICKERY L ARCUS

#	Article	IF	CITATIONS
55	Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium <i>Butyrivibrio proteoclasticus</i> . Proteins: Structure, Function and Bioinformatics, 2010, 78, 1457-1469.	2.6	62
56	Structure of a Eukaryotic Nonribosomal Peptide Synthetase Adenylation Domain That Activates a Large Hydroxamate Amino Acid in Siderophore Biosynthesis. Journal of Biological Chemistry, 2010, 285, 2415-2427.	3.4	57
57	Expression and purification of an adenylation domain from a eukaryotic nonribosomal peptide synthetase: Using structural genomics tools for a challenging target. Protein Expression and Purification, 2010, 74, 162-168.	1.3	5
58	The vapBC Operon from Mycobacterium smegmatis Is An Autoregulated Toxin–Antitoxin Module That Controls Growth via Inhibition of Translation. Journal of Molecular Biology, 2009, 390, 353-367.	4.2	96
59	A Structural Basis for the Reduced Toxicity of Dinophysistoxin-2. Chemical Research in Toxicology, 2009, 22, 1782-1786.	3.3	39
60	Crystal structure of PAE0151 from <i>Pyrobaculum aerophilum</i> , a PINâ€domain (VapC) protein from a toxinâ€antitoxin operon. Proteins: Structure, Function and Bioinformatics, 2008, 72, 510-518.	2.6	45
61	Clarification of the C-35 Stereochemistries of Dinophysistoxin-1 and Dinophysistoxin-2 and Its Consequences for Binding to Protein Phosphatase. Chemical Research in Toxicology, 2007, 20, 868-875.	3.3	52
62	The potential impact of structural genomics on tuberculosis drug discovery. Drug Discovery Today, 2006, 11, 28-34.	6.4	42
63	Structure of naphthoate synthase (MenB) fromMycobacterium tuberculosisin both native and product-bound forms. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1199-1206.	2.5	19
64	A flexible and economical medium-throughput strategy for protein production and crystallization. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1378-1385.	2.5	67
65	The PIN-domain toxin–antitoxin array in mycobacteria. Trends in Microbiology, 2005, 13, 360-365.	7.7	111
66	Crystallographic and Mutational Data Show That the Streptococcal Pyrogenic Exotoxin J Can Use a Common Binding Surface for T-cell Receptor Binding and Dimerization. Journal of Biological Chemistry, 2004, 279, 38571-38576.	3.4	18
67	Distant Structural Homology Leads to the Functional Characterization of an Archaeal PIN Domain as an Exonuclease. Journal of Biological Chemistry, 2004, 279, 16471-16478.	3.4	103
68	Crystallization and preliminary X-ray analysis of a conserved hypothetical protein PAE2754 fromPyrobaculum aerophilumand of a double Leu→Met mutant engineered for MAD phasing. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 733-735.	2.5	4
69	Crystal Structure of a Putative Methyltransferase from Mycobacterium tuberculosis : Misannotation of a Genome Clarified by Protein Structural Analysis. Journal of Bacteriology, 2003, 185, 4057-4065.	2.2	29
70	Protein structure prediction and analysis as a tool for functional genomics. Applied Bioinformatics, 2003, 2, S3-10.	1.6	9
71	The Three-dimensional Structure of a Superantigen-like Protein, SET3, from a Pathogenicity Island of the Staphylococcus aureus Genome. Journal of Biological Chemistry, 2002, 277, 32274-32281.	3.4	77
72	OB-fold domains: a snapshot of the evolution of sequence, structure and function. Current Opinion in Structural Biology, 2002, 12, 794-801.	5.7	195

IF # ARTICLE CITATIONS LISA: an intranet-based flexible database for protein crystallography project management. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1341-1343. Structure of HisF, a histidine biosynthetic protein fromPyrobaculum aerophilum. Acta 74 2.5 9 Crystallographica Section D: Biológical Crystallography, 2001, 57, 1518-1525. Immunological and Biochemical Characterization of Streptococcal Pyrogenic Exotoxins I and J (SPE-I) Tj ETQq1 1 0.784314 rgBT /Over Superantigens – powerful modifiers of the immune system. Trends in Molecular Medicine, 2000, 6, 76 2.6 147 125-132. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 299, 157-168. 4.2 The dependence of chemical exchange on boundary selection in a fibronectin type III domain from human tenascin. Journal of Molecular Biology, 1998, 282, 181-194. 78 4.2 22 A Comparison of the pH, Urea, and Temperature-denatured States of Barnase by Heteronuclear NMR: Implications for the Initiation of Protein Folding. Journal of Molecular Biology, 1995, 254, 305-321. 79 4.2 134 ortho-Directed electrophilic boronation of a benzyl ketone: the preparation, X-ray crystal structure, and some reactions of 4-ethyl-1-hydroxy-3-(4-hydroxyphenyl)-2-oxa-1-boranaphthalene. Journal of 80 1.8 40 Organometallic Chemistry, 1993, 460, 139-147. Superantigen Architecture: Functional Decoration on a Conserved Scaffold., 0, , 91-102.

VICKERY L ARCUS