
Michael J Grey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Muscle-tendon interaction and elastic energy usage in human walking. Journal of Applied Physiology, 2005, 99, 603-608.	2.5	394
2	Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis. Clinical Neurophysiology, 2010, 121, 1939-1951.	1.5	200
3	Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. Journal of Physiology, 2001, 534, 925-933.	2.9	190
4	Barefoot vs common footwear: A systematic review of the kinematic, kinetic and muscle activity differences during walking. Gait and Posture, 2015, 42, 230-239.	1.4	133
5	Post-activation depression of Soleus stretch reflexes in healthy and spastic humans. Experimental Brain Research, 2008, 185, 189-197.	1.5	118
6	Cortical excitability changes following grasping exercise augmented with electrical stimulation. Experimental Brain Research, 2008, 191, 57-66.	1.5	118
7	Positive force feedback in human walking. Journal of Physiology, 2007, 581, 99-105.	2.9	102
8	TMS Brain Mapping in Less Than Two Minutes. Brain Stimulation, 2015, 8, 231-239.	1.6	91
9	Involvement of the corticospinal tract in the control of human gait. Progress in Brain Research, 2011, 192, 181-197.	1.4	76
10	Salivary MicroRNAs: Diagnostic Markers of Mild Traumatic Brain Injury in Contact-Sport. Frontiers in Molecular Neuroscience, 2018, 11, 290.	2.9	74
11	Ankle extensor proprioceptors contribute to the enhancement of the soleus EMG during the stance phase of human walking. Canadian Journal of Physiology and Pharmacology, 2004, 82, 610-616.	1.4	64
12	Contribution of Afferent Feedback to the Soleus Muscle Activity During Human Locomotion. Journal of Neurophysiology, 2005, 93, 167-177.	1.8	62
13	Contribution of afferent feedback and descending drive to human hopping. Journal of Physiology, 2010, 588, 799-807.	2.9	62
14	Load Rather Than Length Sensitive Feedback Contributes to Soleus Muscle Activity During Human Treadmill Walking. Journal of Neurophysiology, 2010, 103, 2747-2756.	1.8	56
15	The TMS Map Scales with Increased Stimulation Intensity and Muscle Activation. Brain Topography, 2016, 29, 56-66.	1.8	48
16	Anatomy and Physiology of Knee Stability. Journal of Functional Morphology and Kinesiology, 2017, 2, 34.	2.4	45
17	Withinâ€step modulation of leg muscle activity by afferent feedback in human walking. Journal of Physiology, 2008, 586, 4643-4648.	2.9	42
18	Decreased Contribution From Afferent Feedback to the Soleus Muscle During Walking in Patients With Spastic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2007, 16, 135-144.	1.6	39

MICHAEL J GREY

#	Article	IF	CITATIONS
19	Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking. Experimental Brain Research, 2006, 173, 713-723.	1.5	38
20	Lack of On-Going Adaptations in the Soleus Muscle Activity During Walking in Patients Affected by Large-Fiber Neuropathy. Journal of Neurophysiology, 2005, 93, 3075-3085.	1.8	37
21	Sudden Drop in Ground Support Produces Force-Related Unload Response in Human Overground Walking. Journal of Neurophysiology, 2009, 101, 1705-1712.	1.8	36
22	Mechanical and neural stretch responses of the human soleus muscle at different walking speeds. Journal of Physiology, 2009, 587, 3375-3382.	2.9	33
23	Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation. Journal of Physiology, 2009, 587, 1669-1676.	2.9	30
24	Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals. Clinical Neurophysiology, 2012, 123, 1371-1382.	1.5	24
25	Rapid Acquisition of the Transcranial Magnetic Stimulation Stimulus Response Curve. Brain Stimulation, 2014, 7, 59-65.	1.6	23
26	A task dependent change in the medium latency component of the soleus stretch reflex. Experimental Brain Research, 2002, 145, 316-322.	1.5	20
27	Plantar flexor stretch reflex responses to whole body loading/unloading during human walking. European Journal of Neuroscience, 2002, 16, 2001-2007.	2.6	20
28	Ultrasonography as a tool to study afferent feedback from the muscle–tendon complex during human walking. Journal of Electromyography and Kinesiology, 2011, 21, 197-207.	1.7	20
29	Exploring the quiet eye in archery using field- and laboratory-based tasks. Experimental Brain Research, 2017, 235, 2843-2855.	1.5	18
30	Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion. Journal of Physiology, 2011, 589, 5819-5831.	2.9	16
31	Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke—Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial. Frontiers in Neurology, 2017, 8, 733.	2.4	15
32	False positives associated with responder/non-responder analyses based on motor evoked potentials. Brain Stimulation, 2019, 12, 314-318.	1.6	12
33	Functional strength training versus movement performance therapy for upper limb motor recovery early after stroke: a RCT. Efficacy and Mechanism Evaluation, 2018, 5, 1-112.	0.7	12
34	Peripheral Electrical and Magnetic Stimulation to Augment Resistance Training. Journal of Functional Morphology and Kinesiology, 2016, 1, 328-342.	2.4	11
35	Interindividual Variability in Use-Dependent Plasticity Following Visuomotor Learning: The Effect of Handedness and Muscle Trained. Journal of Motor Behavior, 2019, 51, 171-184.	0.9	11
36	Intra and inter-session reliability of rapid Transcranial Magnetic Stimulation stimulus-response curves of tibialis anterior muscle in healthy older adults. PLoS ONE, 2017, 12, e0184828.	2.5	10

MICHAEL J GREY

#	Article	IF	CITATIONS
37	Soleus Stretch Reflex during Cycling. Motor Control, 2001, 5, 36-49.	0.6	9
38	Novel tools for rapid online data acquisition of the TMS stimulus-response curve. Brain Stimulation, 2019, 12, 192-194.	1.6	8
39	Neural tension technique is no different from random passive movements in reducing spasticity in patients with traumatic brain injury. Disability and Rehabilitation, 2012, 34, 1978-1985.	1.8	7
40	An Extensive Evaluation of Different Knee Stability Assessment Measures: A Systematic Review. Journal of Functional Morphology and Kinesiology, 2016, 1, 209-229.	2.4	7
41	StimTrack: An open-source software for manual transcranial magnetic stimulation coil positioning. Journal of Neuroscience Methods, 2018, 293, 97-104.	2.5	6
42	Modifications in lower leg muscle activation when walking barefoot or in minimalist shoes across different age-groups. Gait and Posture, 2018, 60, 1-5.	1.4	5
43	Investigation into repetitive concussion in sport (RECOS): study protocol of a prospective, exploratory, observational cohort study. BMJ Open, 2019, 9, e029883.	1.9	5
44	Hamstring stretch reflex: could it be a reproducible objective measure of functional knee stability?― Journal of Experimental Orthopaedics, 2016, 3, 4.	1.8	4
45	The TMS Motor Map Does Not Change Following a Single Session of Mirror Training Either with Or without Motor Imagery. Frontiers in Human Neuroscience, 2017, 11, 601.	2.0	4
46	Changes in the Soleus Stretch Reflex at Different Pedaling Frequencies and Crank Loads during Pedaling. Motor Control, 2006, 10, 265-279.	0.6	3
47	User perspectives on the design and setup of lower limb mirror therapy equipment after stroke: a technical report. Physiotherapy, 2021, 113, 37-43.	0.4	3
48	Do minimalist shoes improve balance and foot strength in older adults?. Footwear Science, 2017, 9, S39-S40.	2.1	2
49	Biomarkers to aid the return to play decision following sports-related concussion: a systematic review. Journal of Concussion, 2022, 6, 205970022110707.	0.6	2