
Antonio Dominguez-Alfaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935472/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112363.	5.0	24
2	Fast Visible-Light Photopolymerization in the Presence of Multiwalled Carbon Nanotubes: Toward 3D Printing Conducting Nanocomposites. ACS Macro Letters, 2022, 11, 303-309.	4.8	24
3	Electrochemical modification of carbon nanotube fibres. Nanoscale, 2022, 14, 9313-9322.	5.6	2
4	Tuning Electronic and Ionic Conductivities in Composite Materials for Electrochemical Devices. ACS Applied Polymer Materials, 2021, 3, 1777-1784.	4.4	12
5	3D Printable Conducting and Biocompatible PEDOTâ€ <i>graft</i> â€PLA Copolymers by Direct Ink Writing. Macromolecular Rapid Communications, 2021, 42, e2100100.	3.9	30
6	3D Printable and Biocompatible longels for Body Sensor Applications. Advanced Electronic Materials, 2021, 7, 2100178.	5.1	30
7	Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Applied Polymer Materials, 2021, 3, 2865-2883.	4.4	62
8	2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers, 2021, 13, 436.	4.5	5
9	Recent Advances on 2D Materials towards 3D Printing. Chemistry, 2021, 3, 1314-1343.	2.2	12
10	Electroactive 3D printable poly(3,4-ethylenedioxythiophene)- <i>graft</i> -poly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment. Polymer Chemistry, 2021, 13, 109-120.	3.9	19
11	Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1269-1278.	5.2	31
12	Water Soluble Cationic Poly(3,4â€Ethylenedioxythiophene) PEDOTâ€N as a Versatile Conducting Polymer for Bioelectronics. Advanced Electronic Materials, 2020, 6, 2000510.	5.1	25
13	Toward Two-Photon Absorbing Dyes with Unusually Potentiated Nonlinear Fluorescence Response. Journal of the American Chemical Society, 2020, 142, 14854-14858.	13.7	14
14	Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 57330-57342.	8.0	16
15	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	4.2	29
16	Elastic and Thermoreversible longels by Supramolecular PVA/Phenol Interactions. Macromolecular Bioscience, 2020, 20, e2000119.	4.1	11
17	Effervescence-assisted spiral hollow-fibre liquid-phase microextraction of trihalomethanes, halonitromethanes, haloacetonitriles, and haloketones in drinking water. Journal of Hazardous Materials, 2020, 397, 122790.	12.4	15
18	Conductive Polymers Building 3D Scaffolds for Tissue Engineering. RSC Polymer Chemistry Series, 2020 383-414	0.2	0

#	Article	IF	CITATIONS
19	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2019, 11, 18671-18680.	8.0	47
20	3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 2019, 20, 73-89.	5.4	76
21	Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Applied Materials & amp; Interfaces, 2018, 10, 43904-43914.	8.0	45
22	Effect of the fullerene in the properties of thin PEDOT/C60 films obtained by co-electrodeposition. Inorganica Chimica Acta, 2017, 468, 239-244.	2.4	9