
Vesna Gagic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
2	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	2.6	467
3	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
4	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
5	Time will tell: resource continuity bolsters ecosystem services. Trends in Ecology and Evolution, 2015, 30, 524-530.	8.7	224
6	The relationship between agricultural intensification and biological control: experimental tests across Europe. , 2011, 21, 2187-2196.		157
7	Global mismatch of policy and research on drivers of biodiversity loss. Nature Ecology and Evolution, 2018, 2, 1071-1074.	7.8	152
8	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	4.0	136
9	Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2946-2953.	2.6	119
10	Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia, 2012, 170, 1099-1109.	2.0	90
11	Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agriculture, Ecosystems and Environment, 2014, 183, 1-10.	5.3	83
12	Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecology and Evolution, 2017, 7, 1942-1953.	1.9	74
13	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	6.4	70
14	Pollinator size and its consequences: Robust estimates of body size in pollinating insects. Ecology and Evolution, 2019, 9, 1702-1714.	1.9	69
15	Pollinators, pests and soil properties interactively shape oilseed rape yield. Basic and Applied Ecology, 2015, 16, 737-745.	2.7	55
16	Ecosystem service of biological pest control in <scp>Australia</scp> : the role of non rop habitats within landscapes. Austral Entomology, 2018, 57, 194-206.	1.4	33
17	Interactive effects of pests increase seed yield. Ecology and Evolution, 2016, 6, 2149-2157.	1.9	32
18	The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage. PLoS ONE, 2016, 11, e0157674.	2.5	29

VESNA GAGIC

#	Article	IF	CITATIONS
19	Aphid parasitoid generalism: development, assessment, and implications for biocontrol. Journal of Pest Science, 2016, 89, 7-20.	3.7	28
20	The effect of protective covers on pollinator health and pollination service delivery. Agriculture, Ecosystems and Environment, 2021, 319, 107556.	5.3	27
21	Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
22	Selfâ€compatible blueberry cultivars require fewer floral visits to maximize fruit production than a partially selfâ€incompatible cultivar. Journal of Applied Ecology, 2020, 57, 2454-2462.	4.0	24
23	Biocontrol in insecticide sprayed crops does not benefit from semiâ€natural habitats and recovers slowly after spraying. Journal of Applied Ecology, 2019, 56, 2176-2185.	4.0	22
24	Aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) in wetland habitats in western Palaearctic: key and associated aphid parasitoid guilds. Annales De La Societe Entomologique De France, 2012, 48, 189-198.	0.9	20
25	Functional role of different habitat types at local and landscape scales for aphids and their natural enemies. Journal of Pest Science, 2017, 90, 261-273.	3.7	20
26	Additive and interactive effects of pollination and biological pest control on crop yield. Journal of Applied Ecology, 2019, 56, 2528-2535.	4.0	20
27	Landscape complexity is not a major trigger of species richness and food web structure of European cereal aphid parasitoids. BioControl, 2015, 60, 451-461.	2.0	19
28	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
29	Flower strips enhance abundance of bumble bee queens and males in landscapes with few honey bee hives. Biological Conservation, 2021, 263, 109363.	4.1	16
30	Pollen beetle mortality is increased by ground-dwelling generalist predators but not landscape complexity. Agriculture, Ecosystems and Environment, 2017, 250, 133-142.	5.3	15
31	Community variability in aphid parasitoids versus predators in response to agricultural intensification. Insect Conservation and Diversity, 2014, 7, 103-112.	3.0	14
32	Insecticide resistance in pollen beetles over 7 years – a landscape approach. Pest Management Science, 2016, 72, 780-786.	3.4	11
33	Aphid parasitoids respond to vegetation heterogeneity but not to fragmentation scale: An experimental field study. Basic and Applied Ecology, 2016, 17, 438-446.	2.7	11
34	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	4.5	11
35	Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic and Applied Ecology, 2022, 60, 114-122.	2.7	9
36	Understanding pollinator foraging behaviour and transition rates between flowers is important to maximize seed set in hybrid crops. Apidologie, 2021, 52, 89-100.	2.0	3

#	Article	IF	CITATIONS
37	Keeping pest populations lower for longer: Connecting farms and natural systems. , 2016, , .		0