## Mario P L Calus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934386/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics, 2013, 193, 327-345.                                                                                                        | 1.2 | 732       |
| 2  | A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and Applied Genetics, 2014, 127, 595-607.                                                                  | 1.8 | 439       |
| 3  | Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking. Genetics, 2013, 193, 347-365.                                                                                      | 1.2 | 370       |
| 4  | Accuracy of Genomic Selection Using Different Methods to Define Haplotypes. Genetics, 2008, 178, 553-561.                                                                                                                 | 1.2 | 308       |
| 5  | Reliability of direct genomic values for animals with different relationships within and to the reference population. Journal of Dairy Science, 2012, 95, 389-400.                                                        | 1.4 | 256       |
| 6  | Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution, 2011, 43, 26.                                                                                                            | 1.2 | 239       |
| 7  | The Effect of Linkage Disequilibrium and Family Relationships on the Reliability of Genomic Prediction.<br>Genetics, 2013, 193, 621-631.                                                                                  | 1.2 | 161       |
| 8  | Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. Journal of Dairy Science, 2011, 94, 6122-6134.                                                | 1.4 | 160       |
| 9  | Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, 2015, 16, 88.                                                                                | 2.7 | 135       |
| 10 | Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value<br>estimation with a marker density of one SNP per cM. Journal of Animal Breeding and Genetics, 2007,<br>124, 362-368. | 0.8 | 114       |
| 11 | Influence of Herd Environment on Health and Fertility and Their Relationship with Milk Production.<br>Journal of Dairy Science, 2005, 88, 335-347.                                                                        | 1.4 | 111       |
| 12 | Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. Genetics<br>Selection Evolution, 2015, 47, 71.                                                                                   | 1.2 | 104       |
| 13 | Genetic Correlations Between Milk Production and Health and Fertility Depending on Herd Environment. Journal of Dairy Science, 2006, 89, 1765-1775.                                                                       | 1.4 | 90        |
| 14 | Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in<br>Holstein–Friesian cattle. Genetics Selection Evolution, 2016, 48, 95.                                                 | 1.2 | 89        |
| 15 | Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values<br>in Dutch Holstein cattle. Journal of Dairy Science, 2012, 95, 876-889.                                           | 1.4 | 86        |
| 16 | Genotype × Environment Interaction for Protein Yield in Dutch Dairy Cattle as Quantified by Different<br>Models. Journal of Dairy Science, 2002, 85, 3115-3123.                                                           | 1.4 | 84        |
| 17 | Estimation of Environmental Sensitivity of Genetic Merit for Milk Production Traits Using a Random Regression Model. Journal of Dairy Science, 2003, 86, 3756-3764.                                                       | 1.4 | 82        |
| 18 | Genomic and pedigree-based genetic parameters for scarcely recorded traits when some animals are genotyped. Journal of Dairy Science, 2011, 94, 4189-4197.                                                                | 1.4 | 78        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improved accuracy of genomic prediction for dry matter intake of dairy cattle from combined<br>European and Australian data sets. Journal of Dairy Science, 2012, 95, 6103-6112.                                 | 1.4 | 64        |
| 20 | Accuracy of genomic prediction using imputed wholeâ€genome sequence data in white layers. Journal of<br>Animal Breeding and Genetics, 2016, 133, 167-179.                                                        | 0.8 | 61        |
| 21 | Genetic parameters across lactation for feed intake, fat- and protein-corrected milk, and liveweight in first-parity Holstein cattle. Journal of Dairy Science, 2014, 97, 5851-5862.                             | 1.4 | 60        |
| 22 | Empirical and deterministic accuracies of across-population genomic prediction. Genetics Selection Evolution, 2015, 47, 5.                                                                                       | 1.2 | 60        |
| 23 | An Equation to Predict the Accuracy of Genomic Values by Combining Data from Multiple Traits,<br>Populations, or Environments. Genetics, 2016, 202, 799-823.                                                     | 1.2 | 54        |
| 24 | Genomic prediction of dry matter intake in dairy cattle from an international data set consisting of<br>research herds in Europe, North America, and Australasia. Journal of Dairy Science, 2015, 98, 6522-6534. | 1.4 | 52        |
| 25 | Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values. Genetics Selection Evolution, 2009, 41, 11.                | 1.2 | 51        |
| 26 | Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal, 2013, 7, 183-191.                                                                                                | 1.3 | 51        |
| 27 | Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex1. Journal of Animal Science, 2018, 96, 1405-1418.                                                       | 0.2 | 50        |
| 28 | Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genetics Selection Evolution, 2015, 47, 42.                                                                                          | 1.2 | 49        |
| 29 | Effects of data structure on the estimation of covariance functions to describe genotype by environment interactions in a reaction norm model. Genetics Selection Evolution, 2004, 36, 489-507.                  | 1.2 | 48        |
| 30 | Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures. Genetics Selection Evolution, 2012, 44, 3.                         | 1.2 | 47        |
| 31 | The effect of rare alleles on estimated genomic relationships from whole genome sequence data. BMC Genetics, 2015, 16, 24.                                                                                       | 2.7 | 46        |
| 32 | Assigning breed origin to alleles in crossbred animals. Genetics Selection Evolution, 2016, 48, 61.                                                                                                              | 1.2 | 45        |
| 33 | Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic<br>Correlations Between Populations. Genetics, 2017, 207, 503-515.                                            | 1.2 | 43        |
| 34 | Associations Among Descriptors of Herd Management and Phenotypic and Genetic Levels of Health and<br>Fertility. Journal of Dairy Science, 2005, 88, 2178-2189.                                                   | 1.4 | 42        |
| 35 | Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance. Genetics Selection Evolution, 2010, 42, 9.                                    | 1.2 | 41        |
| 36 | Genomic selection on breeding time in a wild bird population. Evolution Letters, 2019, 3, 142-151.                                                                                                               | 1.6 | 40        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Predicting energy balance for dairy cows using high-density single nucleotide polymorphism information. Journal of Dairy Science, 2010, 93, 2757-2764.                                                                                                | 1.4 | 39        |
| 38 | Genomic evaluation for a three-way crossbreeding system considering breed-of-origin of alleles.<br>Genetics Selection Evolution, 2017, 49, 75.                                                                                                        | 1.2 | 39        |
| 39 | Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies. Journal of Dairy Science, 2013, 96, 6703-6715.                                                                           | 1.4 | 38        |
| 40 | Identification of Mendelian inconsistencies between SNP and pedigree information of sibs. Genetics Selection Evolution, 2011, 43, 34.                                                                                                                 | 1.2 | 37        |
| 41 | Efficient genomic prediction based on whole-genome sequence data using split-and-merge Bayesian variable selection. Genetics Selection Evolution, 2016, 48, 49.                                                                                       | 1.2 | 36        |
| 42 | Short communication: Milk fat composition of 4 cattle breeds in the Netherlands. Journal of Dairy Science, 2011, 94, 1021-1025.                                                                                                                       | 1.4 | 35        |
| 43 | Selection of SNP from 50K and 777K arrays to predict breed of origin in cattle1. Journal of Animal Science, 2013, 91, 5128-5134.                                                                                                                      | 0.2 | 34        |
| 44 | Breeding Value Estimation for Fat Percentage Using Dense Markers on Bos taurus Autosome 14.<br>Journal of Dairy Science, 2007, 90, 4821-4829.                                                                                                         | 1.4 | 33        |
| 45 | Whole-genome sequence data uncover loss of genetic diversity due to selection. Genetics Selection Evolution, 2016, 48, 33.                                                                                                                            | 1.2 | 33        |
| 46 | SNPrune: an efficient algorithm to prune large SNP array and sequence datasets based on high linkage<br>disequilibrium. Genetics Selection Evolution, 2018, 50, 34.                                                                                   | 1.2 | 33        |
| 47 | Empirical determination of breed-of-origin of alleles in three-breed cross pigs. Genetics Selection<br>Evolution, 2016, 48, 55.                                                                                                                       | 1.2 | 31        |
| 48 | Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows<br>from research herds in Europe, North America, and Australasia using 2 reference populations. Journal<br>of Dairy Science, 2014, 97, 1799-1811. | 1.4 | 29        |
| 49 | The impact of genotyping different groups of animals on accuracy when moving from traditional to genomic selection. Journal of Dairy Science, 2012, 95, 5412-5421.                                                                                    | 1.4 | 28        |
| 50 | Plasma Proteome Profiles Associated with Diet-Induced Metabolic Syndrome and the Early Onset of Metabolic Syndrome in a Pig Model. PLoS ONE, 2013, 8, e73087.                                                                                         | 1.1 | 27        |
| 51 | Benefits of Dominance over Additive Models for the Estimation of Average Effects in the Presence of Dominance. G3: Genes, Genomes, Genetics, 2017, 7, 3405-3414.                                                                                      | 0.8 | 27        |
| 52 | Validation of simultaneous deregression of cow and bull breeding values and derivation of appropriate weights. Journal of Dairy Science, 2016, 99, 6403-6419.                                                                                         | 1.4 | 26        |
| 53 | Breeding Top Genotypes and Accelerating Response to Recurrent Selection by Selecting Parents with Greater Gametic Variance. Genetics, 2020, 214, 91-107.                                                                                              | 1.2 | 26        |
| 54 | Genotype by Environment Interaction for Somatic Cell Score Across Bulk Milk Somatic Cell Count and Days in Milk. Journal of Dairy Science, 2006, 89, 4846-4857.                                                                                       | 1.4 | 25        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Consequences for diversity when prioritizing animals for conservation with pedigree or genomic information. Journal of Animal Breeding and Genetics, 2011, 128, 473-481.                                                         | 0.8 | 25        |
| 56 | Accuracy of genomic prediction of purebreds for cross bred performance in pigs. Journal of Animal Breeding and Genetics, 2016, 133, 443-451.                                                                                     | 0.8 | 24        |
| 57 | Genomic prediction for crossbred performance using metafounders1. Journal of Animal Science, 2019, 97, 548-558.                                                                                                                  | 0.2 | 24        |
| 58 | Imputation of non-genotyped individuals based on genotyped relatives: assessing the imputation accuracy of a real case scenario in dairy cattle. Genetics Selection Evolution, 2014, 46, 6.                                      | 1.2 | 23        |
| 59 | Evaluation of genomic selection for replacement strategies using selection index theory. Journal of Dairy Science, 2015, 98, 6499-6509.                                                                                          | 1.4 | 23        |
| 60 | The Importance of Endophenotypes to Evaluate the Relationship between Genotype and External Phenotype. International Journal of Molecular Sciences, 2017, 18, 472.                                                               | 1.8 | 23        |
| 61 | Effect of enlarging the reference population with (un)genotyped animals on the accuracy of genomic selection in dairy cattle. Journal of Dairy Science, 2011, 94, 431-441.                                                       | 1.4 | 22        |
| 62 | The association between somatic cell count patterns and milk production prior to mastitis. Livestock Science, 2005, 96, 291-299.                                                                                                 | 1.2 | 21        |
| 63 | Human-Mediated Introgression of Haplotypes in a Modern Dairy Cattle Breed. Genetics, 2018, 209, 1305-1317.                                                                                                                       | 1.2 | 21        |
| 64 | Effects of Management and Genetics on Udder Health and Milk Composition in Dairy Cows. Journal of<br>Dairy Science, 2007, 90, 229-238.                                                                                           | 1.4 | 20        |
| 65 | Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance. Genetics Selection Evolution, 2009, 41, 23.                                             | 1.2 | 20        |
| 66 | Pedigree―and markerâ€based methods in the estimation of genetic diversity in small groups of Holstein<br>cattle. Journal of Animal Breeding and Genetics, 2012, 129, 195-205.                                                    | 0.8 | 20        |
| 67 | Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask<br>Bayesian variable selection. Journal of Dairy Science, 2018, 101, 4279-4294.                                                 | 1.4 | 20        |
| 68 | The Impact of Non-additive Effects on the Genetic Correlation Between Populations. G3: Genes,<br>Genomes, Genetics, 2020, 10, 783-795.                                                                                           | 0.8 | 20        |
| 69 | Imputation of missing single nucleotide polymorphism genotypes using a multivariate mixed model framework1. Journal of Animal Science, 2011, 89, 2042-2049.                                                                      | 0.2 | 19        |
| 70 | Unraveling the genetic architecture of environmental variance of somatic cell score using<br>high-density single nucleotide polymorphism and cow data from experimental farms. Journal of Dairy<br>Science, 2013, 96, 7306-7317. | 1.4 | 19        |
| 71 | Validation of genomic predictions for body weight in broilers using crossbred information and considering breed-of-origin of alleles. Genetics Selection Evolution, 2019, 51, 38.                                                | 1.2 | 19        |
| 72 | Genomic Evaluation for a Crossbreeding System Implementing Breed-of-Origin for Targeted Markers.<br>Frontiers in Genetics, 2019, 10, 418.                                                                                        | 1.1 | 19        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Across population genomic prediction scenarios in which Bayesian variable selection outperforms<br>GBLUP. BMC Genetics, 2015, 16, 146.                                                                                    | 2.7 | 18        |
| 74 | Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs. G3: Genes, Genomes, Genetics, 2018, 8, 113-121.                            | 0.8 | 18        |
| 75 | Impact of merging commercial breeding lines on the genetic diversity of Landrace pigs. Genetics<br>Selection Evolution, 2019, 51, 60.                                                                                     | 1.2 | 18        |
| 76 | A second-level diagonal preconditioner for single-step SNPBLUP. Genetics Selection Evolution, 2019, 51, 30.                                                                                                               | 1.2 | 18        |
| 77 | Genomic prediction based on data from three layer lines: a comparison between linear methods.<br>Genetics Selection Evolution, 2014, 46, 57.                                                                              | 1.2 | 17        |
| 78 | The impact of using old germplasm on genetic merit and diversity—A cattle breed case study. Journal<br>of Animal Breeding and Genetics, 2018, 135, 311-322.                                                               | 0.8 | 17        |
| 79 | Variance estimates are similar using pedigree or genomic relationships with or without the use of metafounders or the algorithm for proven and young animals1. Journal of Animal Science, 2020, 98, .                     | 0.2 | 17        |
| 80 | Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds<br>in the Netherlands. Journal of Dairy Science, 2013, 96, 2570-2582.                                                | 1.4 | 16        |
| 81 | Estimating the purebred-crossbred genetic correlation of body weight in broiler chickens with pedigree or genomic relationships. Genetics Selection Evolution, 2019, 51, 6.                                               | 1.2 | 16        |
| 82 | Investigating the impact of preselection on subsequent single-step genomic BLUP evaluation of preselected animals. Genetics Selection Evolution, 2020, 52, 42.                                                            | 1.2 | 16        |
| 83 | Computational strategies for the preconditioned conjugate gradient method applied to ssSNPBLUP, with an application to a multivariate maternal model. Genetics Selection Evolution, 2020, 52, 24.                         | 1.2 | 16        |
| 84 | Prediction of haplotypes for ungenotyped animals and its effect on marker-assisted breeding value estimation. Genetics Selection Evolution, 2010, 42, 10.                                                                 | 1.2 | 15        |
| 85 | Accuracy of imputation using the most common sires as reference population in layer chickens. BMC<br>Genetics, 2015, 16, 101.                                                                                             | 2.7 | 15        |
| 86 | Genomic prediction of survival time in a population of brown laying hens showing cannibalistic behavior. Genetics Selection Evolution, 2016, 48, 68.                                                                      | 1.2 | 15        |
| 87 | Contribution of rare and low-frequency whole-genome sequence variants to complex traits variation in dairy cattle. Genetics Selection Evolution, 2017, 49, 60.                                                            | 1.2 | 15        |
| 88 | Genomic Prediction Using Individual-Level Data and Summary Statistics from Multiple Populations.<br>Genetics, 2018, 210, 53-69.                                                                                           | 1.2 | 15        |
| 89 | Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. Journal of Dairy Science, 2020, 103, 10347-10360. | 1.4 | 15        |
| 90 | Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe. Genetics Selection Evolution, 2021, 53, 23.                                                          | 1.2 | 15        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations. BMC Genetics, 2015, 16, 87.                                    | 2.7 | 14        |
| 92  | Sparse single-step genomic BLUP in crossbreeding schemes1,2. Journal of Animal Science, 2018, 96, 2060-2073.                                                                  | 0.2 | 14        |
| 93  | Estimation of Genetic Parameters for Milk Fat Depression in Dairy Cattle. Journal of Dairy Science, 2005, 88, 1166-1177.                                                      | 1.4 | 13        |
| 94  | Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information. Journal of Dairy Science, 2012, 95, 2132-2143. | 1.4 | 13        |
| 95  | Right-hand-side updating for fast computing of genomic breeding values. Genetics Selection Evolution, 2014, 46, 24.                                                           | 1.2 | 13        |
| 96  | Regulating appetite in broilers for improving body and muscle development – A review. Journal of<br>Animal Physiology and Animal Nutrition, 2020, 104, 1819-1834.             | 1.0 | 13        |
| 97  | Prediction of the reliability of genomic breeding values for crossbred performance. Genetics Selection Evolution, 2017, 49, 43.                                               | 1.2 | 12        |
| 98  | Impact of rare and low-frequency sequence variants on reliability of genomic prediction in dairy cattle. Genetics Selection Evolution, 2018, 50, 62.                          | 1.2 | 12        |
| 99  | Prediction of nutrient digestibility in growerâ€finisher pigs based on faecal microbiota composition.<br>Journal of Animal Breeding and Genetics, 2020, 137, 23-35.           | 0.8 | 12        |
| 100 | Required properties for markers used to calculate unbiased estimates of the genetic correlation between populations. Genetics Selection Evolution, 2018, 50, 65.              | 1.2 | 11        |
| 101 | Review: optimizing genomic selection for crossbred performance by model improvement and data collection. Journal of Animal Science, 2021, 99, .                               | 0.2 | 11        |
| 102 | The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture. Genetics Selection Evolution, 2022, 54, 19.        | 1.2 | 11        |
| 103 | Genomic prediction of breeding values using previously estimated SNP variances. Genetics Selection Evolution, 2014, 46, 52.                                                   | 1.2 | 10        |
| 104 | Genetic changes of survival traits over the past 25 yr in Dutch dairy cattle. Journal of Dairy Science, 2016, 99, 9810-9819.                                                  | 1.4 | 10        |
| 105 | Accuracies of breeding values for dry matter intake using nongenotyped animals and predictor traits in different lactations. Journal of Dairy Science, 2017, 100, 9103-9114.  | 1.4 | 10        |
| 106 | Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin.<br>BMC Genomics, 2018, 19, 740.                                        | 1.2 | 10        |
| 107 | Technical note: Genetic groups in single-step single nucleotide polymorphism best linear unbiased predictor. Journal of Dairy Science, 2021, 104, 3298-3303.                  | 1.4 | 10        |
| 108 | Estimating genomic breeding values from the QTL-MAS Workshop Data using a single SNP and haplotype/IBD approach. BMC Proceedings, 2009, 3, S10.                               | 1.8 | 9         |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A comparison of principal component regression and genomic REML for genomic prediction across populations. Genetics Selection Evolution, 2014, 46, 60.                                                                      | 1.2 | 9         |
| 110 | Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts. Genetics Selection Evolution, 2017, 49, 79.                                                              | 1.2 | 9         |
| 111 | Avoiding preselection bias in subsequent singleâ€step genomic BLUP evaluations of genomically preselected animals. Journal of Animal Breeding and Genetics, 2021, 138, 432-441.                                             | 0.8 | 9         |
| 112 | Estimating genetic diversity across the neutral genome with the use of dense marker maps. Genetics<br>Selection Evolution, 2010, 42, 12.                                                                                    | 1.2 | 8         |
| 113 | Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships. Genetics Selection Evolution, 2016, 48, 60.                           | 1.2 | 8         |
| 114 | Optimizing genomic reference populations to improve crossbred performance. Genetics Selection Evolution, 2020, 52, 65.                                                                                                      | 1.2 | 8         |
| 115 | Impact of sub-setting the data of the main Limousin beef cattle population on the estimates of across-country genetic correlations. Genetics Selection Evolution, 2020, 52, 32.                                             | 1.2 | 8         |
| 116 | Genetic evaluation of conformation traits using random contemporary groups and reducing the influence of parent averages. Livestock Science, 2001, 69, 129-137.                                                             | 1.2 | 7         |
| 117 | Comparison of analyses of the QTLMAS XIII common dataset. I: genomic selection. BMC Proceedings, 2010, 4, S1.                                                                                                               | 1.8 | 7         |
| 118 | Simultaneous QTL detection and genomic breeding value estimation using high density SNP chips. BMC<br>Proceedings, 2010, 4, S9.                                                                                             | 1.8 | 7         |
| 119 | Consequences for diversity when animals are prioritized for conservation of the whole genome or of one specific allele. Journal of Animal Breeding and Genetics, 2014, 131, 61-70.                                          | 0.8 | 7         |
| 120 | Overlap in genomic variation associated with milk fat composition in Holstein Friesian and Dutch native dual-purpose breeds. Journal of Dairy Science, 2015, 98, 6510-6521.                                                 | 1.4 | 7         |
| 121 | Prediction performance of linear models and gradient boosting machine on complex phenotypes in outbred mice. G3: Genes, Genomes, Genetics, 2022, 12, .                                                                      | 0.8 | 7         |
| 122 | Conservation priorities for the different lines of Dutch Red and White Friesian cattle change when<br>relationships with other breeds are taken into account. Journal of Animal Breeding and Genetics, 2017,<br>134, 69-77. | 0.8 | 6         |
| 123 | Genomic prediction based on data from three layer lines using non-linear regression models. Genetics<br>Selection Evolution, 2014, 46, 75.                                                                                  | 1.2 | 5         |
| 124 | Assessment of sire contribution and breed-of-origin of alleles in a three-way crossbred broiler dataset. Poultry Science, 2019, 98, 6270-6280.                                                                              | 1.5 | 5         |
| 125 | Predicting the purebred-crossbred genetic correlation from the genetic variance components in the parental lines. Genetics Selection Evolution, 2021, 53, 10.                                                               | 1.2 | 4         |
| 126 | Including copy number variation in association studies to predict genotypic values. Genetical Research, 2010, 92, 115-125.                                                                                                  | 0.3 | 3         |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Everâ€growing data sets pose (new) challenges to genomic prediction models. Journal of Animal<br>Breeding and Genetics, 2015, 132, 407-408.                                   | 0.8 | 3         |
| 128 | Heritability of milk fat composition is considerably lower for Meuse-Rhine-Yssel compared to Holstein<br>Friesian cattle. Livestock Science, 2015, 180, 58-64.                | 0.6 | 3         |
| 129 | Factors affecting accuracy of estimated effective number of chromosome segments for numerically small breeds. Journal of Animal Breeding and Genetics, 2021, 138, 151-160.    | 0.8 | 3         |
| 130 | Relatedness between numerically small Dutch Red dairy cattle populations and possibilities for multibreed genomic prediction. Journal of Dairy Science, 2021, 104, 4498-4506. | 1.4 | 3         |
| 131 | The impact of direct-maternal genetic correlations on international beef cattle evaluations for<br>Limousin weaning weight. Journal of Animal Science, 2021, 99, .            | 0.2 | 3         |
| 132 | Persistence of functional microbiota composition across generations. Scientific Reports, 2021, 11, 19007.                                                                     | 1.6 | 3         |
| 133 | Estimation of dam line composition of 3-way crossbred animals using genomic information. Genetics<br>Selection Evolution, 2022, 54, .                                         | 1.2 | 3         |
| 134 | Impact of genomic preselection on subsequent genetic evaluations with ssGBLUP using real data from pigs. Genetics Selection Evolution, 2022, 54, .                            | 1.2 | 1         |