Christiana Ruhrberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology, 2003, 161, 1163-1177.	2.3	2,483
2	Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 2010, 116, 829-840.	0.6	932
3	Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes and Development, 2002, 16, 2684-2698.	2.7	779
4	Distinct Macrophage Phenotypes Contribute to Kidney Injury and Repair. Journal of the American Society of Nephrology: JASN, 2011, 22, 317-326.	3.0	718
5	Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport. Science, 2003, 300, 808-812.	6.0	652
6	Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell, 2015, 162, 1127-1139.	13.5	633
7	Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature, 2008, 453, 662-666.	13.7	459
8	Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Developmental Dynamics, 2004, 231, 503-509.	0.8	243
9	VEGF in the nervous system. Organogenesis, 2010, 6, 107-114.	0.4	242
10	Diverse roles for VEGF-A in the nervous system. Development (Cambridge), 2012, 139, 1371-1380.	1.2	239
11	The plakin family: versatile organizers of cytoskeletal architecture. Current Opinion in Genetics and Development, 1997, 7, 392-397.	1.5	204
12	Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21040-21045.	3.3	197
13	Periplakin, a Novel Component of Cornified Envelopes and Desmosomes That Belongs to the Plakin Family and Forms Complexes with Envoplakin. Journal of Cell Biology, 1997, 139, 1835-1849.	2.3	192
14	The Neuropilin 1 Cytoplasmic Domain Is Required for VEGF-A-Dependent Arteriogenesis. Developmental Cell, 2013, 25, 156-168.	3.1	184
15	Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes and Development, 2004, 18, 2822-2834.	2.7	166
16	Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin Journal of Cell Biology, 1996, 134, 715-729.	2.3	163
17	VEGF Signaling through Neuropilin 1 Guides Commissural Axon Crossing at the Optic Chiasm. Neuron, 2011, 70, 951-965.	3.8	153
18	NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood, 2013, 121, 2352-2362.	0.6	142

#	Article	IF	CITATIONS
19	Growing and shaping the vascular tree: multiple roles for VEGF. BioEssays, 2003, 25, 1052-1060.	1.2	140
20	Semaphorin3A, Neuropilin-1, and PlexinA1 Are Required for Lymphatic Valve Formation. Circulation Research, 2012, 111, 437-445.	2.0	128
21	Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Human Molecular Genetics, 2011, 20, 336-344.	1.4	124
22	Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature, 2018, 562, 223-228.	13.7	116
23	Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development (Cambridge), 2003, 130, 5663-5679.	1.2	113
24	State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization. Circulation Research, 2015, 116, e99-132.	2.0	113
25	Selective requirements for NRP1 ligands during neurovascular patterning. Development (Cambridge), 2007, 134, 1833-1843.	1.2	112
26	Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1–dependent ABL1 activation in endothelial cells. Journal of Experimental Medicine, 2014, 211, 1167-1183.	4.2	112
27	Neuropilin Regulation of Angiogenesis, Arteriogenesis, and Vascular Permeability. Microcirculation, 2014, 21, 315-323.	1.0	109
28	The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development (Cambridge), 2011, 138, 4185-4191.	1.2	104
29	Vascularisation of the central nervous system. Mechanisms of Development, 2015, 138, 26-36.	1.7	104
30	Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development (Cambridge), 2014, 141, 556-562.	1.2	101
31	Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6164-6169.	3.3	97
32	Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. Journal of Clinical Investigation, 2015, 125, 2413-2428.	3.9	97
33	Envoplakin and Periplakin are Components of the Paraneoplastic Pemphigus Antigen Complex. Journal of Investigative Dermatology, 1998, 111, 1236-1238.	0.3	92
34	Blood Vessel Maturation and Response to Vascular-Disrupting Therapy in Single Vascular Endothelial Growth Factor-A Isoform–Producing Tumors. Cancer Research, 2008, 68, 2301-2311.	0.4	92
35	Robo1 Regulates Semaphorin Signaling to Guide the Migration of Cortical Interneurons through the Ventral Forebrain. Journal of Neuroscience, 2011, 31, 6174-6187.	1.7	92
36	Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development (Cambridge), 2008, 135, 1605-1613.	1.2	91

#	Article	IF	CITATIONS
37	The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nature Protocols, 2013, 8, 418-429.	5.5	88
38	NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells. Cell Reports, 2015, 11, 1577-1590.	2.9	88
39	Neurovascular development and links to disease. Cellular and Molecular Life Sciences, 2013, 70, 1675-1684.	2.4	87
40	Neuropilin regulation of angiogenesis. Biochemical Society Transactions, 2014, 42, 1623-1628.	1.6	82
41	Neuropilin signalling in vessels, neurons and tumours. Seminars in Cell and Developmental Biology, 2013, 24, 172-178.	2.3	77
42	Neuropilin, you gotta let me know. Cell Adhesion and Migration, 2010, 4, 61-66.	1.1	76
43	VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels. Development (Cambridge), 2011, 138, 3723-3733.	1.2	71
44	NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Developmental Biology, 2012, 369, 277-285.	0.9	69
45	NRP1 function and targeting in neurovascular development and eye disease. Progress in Retinal and Eye Research, 2016, 52, 64-83.	7.3	63
46	Neural crest–derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. Journal of Clinical Investigation, 2015, 125, 2661-2676.	3.9	63
47	Plexin A3 and plexin A4 convey semaphorin signals during facial nerve development. Developmental Biology, 2008, 324, 1-9.	0.9	60
48	Neuropilin ligands in vascular and neuronal patterning. Biochemical Society Transactions, 2009, 37, 1228-1232.	1.6	58
49	Neural Crest Cells in Cardiovascular Development. Current Topics in Developmental Biology, 2015, 111, 183-200.	1.0	57
50	Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia. Development (Cambridge), 2009, 136, 1785-1789.	1.2	56
51	Neural crest cell-derived VEGF promotes embryonic jaw extension. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6086-6091.	3.3	54
52	VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. Journal of Experimental Medicine, 2017, 214, 1049-1064.	4.2	53
53	Emerging roles for semaphorins and VEGFs in synaptogenesis and synaptic plasticity. Cell Adhesion and Migration, 2012, 6, 541-546.	1.1	51
54	Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. Science Signaling, 2016, 9, ra42.	1.6	51

#	Article	IF	CITATIONS
55	VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels. Development (Cambridge), 2017, 144, 2504-2516.	1.2	47
56	Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment. Breast Cancer Research, 2011, 13, R79.	2.2	46
57	First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis, 2021, 24, 199-211.	3.7	46
58	Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. ELife, 2019, 8, .	2.8	46
59	Cross-talk between blood vessels and neural progenitors in the developing brain. Neuronal Signaling, 2018, 2, NS20170139.	1.7	44
60	Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 19-24.	1.1	39
61	Regulation of embryonic neurogenesis by germinal zone vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13414-13419.	3.3	38
62	HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3420-3429.	1.8	38
63	The Human Surfeit Locus. Genomics, 1998, 52, 72-78.	1.3	36
64	Tamoxifen-Activated CreERT Impairs Retinal Angiogenesis Independently of Gene Deletion. Circulation Research, 2020, 127, 849-850.	2.0	35
65	Whole chromosome 17 loss in ovarian cancer. Genes Chromosomes and Cancer, 1993, 8, 195-198.	1.5	34
66	Envoplakin, a Possible Candidate Gene for Focal NEPPK/Esophageal Cancer (TOC): The Integration of Genetic and Physical Maps of the TOC Region on 17q25. Genomics, 1999, 59, 234-242.	1.3	34
67	In the beginning. Cell Adhesion and Migration, 2010, 4, 622-630.	1.1	33
68	The Mouse p97 (CDC48) Gene. Journal of Biological Chemistry, 1999, 274, 10154-10162.	1.6	32
69	Chromosomal Localisation of the Human Envoplakin Gene (EVPL) to the Region of the Tylosis Oesophageal Cancer Gene (TOCG) on 17q25. Genomics, 1996, 37, 381-385.	1.3	29
70	VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development (Cambridge), 2015, 142, 314-9.	1.2	29
71	Mechanisms and cell lineages in lymphatic vascular development. Angiogenesis, 2021, 24, 271-288.	3.7	29
72	A double agent in cancer: Deciphering macrophage roles in human tumors. Nature Medicine, 2010, 16, 861-862.	15.2	28

#	Article	IF	CITATIONS
73	VEGF receptor signaling in vertebrate development. Organogenesis, 2010, 6, 97-106.	0.4	27
74	Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain. Cerebral Cortex, 2018, 28, 2577-2593.	1.6	27
75	Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Developmental Biology, 2014, 385, 220-229.	0.9	25
76	Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathologica, 2020, 139, 383-401.	3.9	24
77	Mapping nucleolar and spliceosome localization sequences of neuregulin1-β3. Experimental Cell Research, 2004, 299, 110-118.	1.2	23
78	Suppressing β3-integrin triggers a neuropilin-1 dependent change in focal adhesion remodelling that can be targeted to block pathological angiogenesis. DMM Disease Models and Mechanisms, 2015, 8, 1105-19.	1.2	23
79	Structure and Regulation of the Envoplakin Gene. Journal of Biological Chemistry, 2000, 275, 19857-19865.	1.6	21
80	Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla. Development (Cambridge), 2018, 145, .	1.2	21
81	2- and 6- <i>O</i> -sulfated proteoglycans have distinct and complementary roles in cranial axon guidance and motor neuron migration. Development (Cambridge), 2016, 143, 1907-13.	1.2	20
82	Evaluating Vascular Hyperpermeability-inducing Agents in the Skin with the Miles Assay. Journal of Visualized Experiments, 2018, , .	0.2	20
83	PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons. Development (Cambridge), 2019, 146, .	1.2	19
84	Role of the Neuropilin Ligands VEGF164 and SEMA3A in Neuronal and Vascular Patterning in the Mouse. Novartis Foundation Symposium, 2007, 283, 230-237.	1.2	17
85	Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. Journal of Comparative Neurology, 2016, 524, 518-534.	0.9	17
86	The cytoplasmic domain of neuropilinâ€1 regulates focal adhesion turnover. FEBS Letters, 2013, 587, 3392-3399.	1.3	16
87	miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization. JCI Insight, 2020, 5, .	2.3	14
88	VEGF188 promotes corneal reinnervation after injury. JCI Insight, 2019, 4, .	2.3	10
89	KIT Is Required for Fetal Liver Hematopoiesis. Frontiers in Cell and Developmental Biology, 2021, 9, 648630.	1.8	9
90	KIT is dispensable for physiological organ vascularisation in the embryo. Angiogenesis, 2022, 25, 343-353.	3.7	8

#	Article	IF	CITATIONS
91	Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation. ELife, 2017, 6, .	2.8	6
92	The Embryonic Mouse Hindbrain and Postnatal Retina as In Vivo Models to Study Angiogenesis. Methods in Molecular Biology, 2015, 1332, 177-188.	0.4	5
93	Mouse Hindbrain Ex Vivo Culture to Study Facial Branchiomotor Neuron Migration. Journal of Visualized Experiments, 2014, , .	0.2	4
94	Lung blood and lymphatic vascular development. , 2021, , 31-43.		4
95	The Periplakin Gene Maps to 16p13.3 in Human and 16A–B1 in Mouse. Genomics, 1998, 49, 157-159.	1.3	3
96	VEGF in the Nervous System. , 2008, , 91-103.		3
97	Imatinib may be ABL to improve anti-angiogenic therapy. Molecular and Cellular Oncology, 2015, 2, e968034.	0.3	3
98	The Murine Hindbrain as a Model to Study the Molecular and Cellular Mechanisms of Angiogenesis in Intact Tissues. , 2012, , 205-215.		2
99	Neuropilin Signalling in Vascular Development and Pathology. Current Angiogenesis, 2012, 1, 125-132.	0.1	2
100	Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development (Cambridge), 2009, 136, 347-347.	1.2	1
101	The Hormone of Love Attracts a Partner for Life. Developmental Cell, 2011, 21, 602-604.	3.1	1
102	The Mouse Hindbrain: An In Vivo Model to Analyze Developmental Angiogenesis. Methods in Molecular Biology, 2015, 1214, 29-40.	0.4	1
103	The Mouse Hindbrain As a Model for Studying Embryonic Neurogenesis. Journal of Visualized Experiments, 2018, , .	0.2	1
104	Regulation and Function of Cardiac Neural Crest Cells \hat{a} $^{+}$. , 2018, , .		1
105	The Role of the Neuropilins in Developmental Angiogenesis. , 2017, , 93-107.		1
106	Neuropilin 1 controls cardiovascular development through neural crest cells. FASEB Journal, 2009, 23, 302.3.	0.2	1
107	03-P064 Macrophages promote vascularisation of the developing brain. Mechanisms of Development, 2009, 126, S85.	1.7	Ο
108	Neuropilins in Development and Disease of the Nervous System. , 2015, , 65-75.		0

7

#	Article	IF	CITATIONS
109	VEGF Receptor Signalling in Vertebrate Development. , 2008, , 14-29.		Ο
110	Whole-Mount Immunofluorescence Protocol for 3D Imaging, Reconstruction, and Quantification of Fourth Pharyngeal Arch Formation. Methods in Molecular Biology, 2022, 2441, 41-62.	0.4	0
111	The Embryonic Mouse Model to Study Angiogenesis. Methods in Molecular Biology, 2022, 2441, 3-18.	0.4	0
112	The Embryonic Mouse Hindbrain and Postnatal Retina as In Vivo Models to Study Angiogenesis. Methods in Molecular Biology, 2022, 2475, 275-287.	0.4	0
113	Evaluating VEGF-Induced Vascular Leakage Using the Miles Assay. Methods in Molecular Biology, 2022, 2475, 289-295.	0.4	0