Ce Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3933825/publications.pdf

Version: 2024-02-01

331670 477307 3,221 30 21 29 citations h-index g-index papers 31 31 31 4953 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Catalyst design to direct high-octane gasoline fuel properties for improved engine efficiency. Applied Catalysis B: Environmental, 2022, 301, 120801.	20.2	7
2	A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589, 396-401.	27.8	290
3	Catalytic CO Oxidation on MgAl ₂ O ₄ -Supported Iridium Single Atoms: Ligand Configuration and Site Geometry. Journal of Physical Chemistry C, 2021, 125, 11380-11390.	3.1	13
4	Selective Butene Formation in Direct Ethanol-to-C ₃₊ -Olefin Valorization over Zn–Y/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen. ACS Catalysis, 2021, 11, 7193-7209.	11,2	13
5	Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis. CCS Chemistry, 2021, 3, 2712-2724.	7.8	41
6	Impact of the Coordination Environment on Atomically Dispersed Pt Catalysts for Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 907-913.	11,2	121
7	Inverse Bimetallic RuSn Catalyst for Selective Carboxylic Acid Reduction. ACS Catalysis, 2019, 9, 11350-11359.	11.2	15
8	Innenrücktitelbild: Puffing Up Energetic Metal-Organic Frameworks to Large Carbon Networks with Hierarchical Porosity and Atomically Dispersed Metal Sites (Angew. Chem. 7/2019). Angewandte Chemie, 2019, 131, 2177-2177.	2.0	0
9	Exploring the Alcohol Stability of Bis(phosphine) Cobalt Dialkyl Precatalysts in Asymmetric Alkene Hydrogenation. Organometallics, 2019, 38, 149-156.	2.3	26
10	Puffing Up Energetic Metal–Organic Frameworks to Large Carbon Networks with Hierarchical Porosity and Atomically Dispersed Metal Sites. Angewandte Chemie, 2019, 131, 1997-2001.	2.0	64
11	Puffing Up Energetic Metal–Organic Frameworks to Large Carbon Networks with Hierarchical Porosity and Atomically Dispersed Metal Sites. Angewandte Chemie - International Edition, 2019, 58, 1975-1979.	13.8	237
12	Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. Journal of the American Chemical Society, 2018, 140, 6308-6316.	13.7	34
13	Tetrahedral Nickel(II) Phosphosilicate Singleâ€Site Selective Propane Dehydrogenation Catalyst. ChemCatChem, 2018, 10, 961-964.	3.7	31
14	Nuclearity effects in supported, single-site Fe(<scp>ii</scp>) hydrogenation pre-catalysts. Dalton Transactions, 2018, 47, 10842-10846.	3.3	9
15	In Situ S/TEM Reduction Reaction of Ni-Mo2C Catalyst for Biomass Conversion. Microscopy and Microanalysis, 2018, 24, 322-323.	0.4	1
16	Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of <i>n</i> -Butane to 1,3-Butadiene. ACS Catalysis, 2018, 8, 10058-10063.	11,2	67
17	Probing Nitrogenâ€Doping Effects in the Coreâ€Shell Structured Catalysts for Bifunctional Electrocatalysis ChemCatChem, 2018, 10, 4248-4252.	3.7	6
18	Surface Organometallic Chemistry of Supported Iridium(III) as a Probe for Organotransition Metalâ€"Support Interactions in Câ€"H Activation. ACS Catalysis, 2018, 8, 5363-5373.	11.2	29

#	Article	IF	CITATIONS
19	Hierarchically Porous M–N–C (M = Co and Fe) Singleâ€Atom Electrocatalysts with Robust MN <i>_×</i> Active Moieties Enable Enhanced ORR Performance. Advanced Energy Materials, 2018, 8, 1801956.	19.5	540
20	Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction. Nano Research, 2017, 10, 1322-1328.	10.4	56
21	Highly dispersed Co-based Fischer–Tropsch synthesis catalysts from metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 8081-8086.	10.3	132
22	Construction of Synergistic Fe ₅ C ₂ /Co Heterostructured Nanoparticles as an Enhanced Low Temperature Fischer–Tropsch Synthesis Catalyst. ACS Catalysis, 2017, 7, 5661-5667.	11.2	67
23	Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal–Support Interaction. Angewandte Chemie, 2017, 129, 10901-10905.	2.0	83
24	Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal–Support Interaction. Angewandte Chemie - International Edition, 2017, 56, 10761-10765.	13.8	384
25	Anionâ€Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis. Advanced Materials, 2017, 29, 1703436.	21.0	58
26	Photothermal Therapy: Multifunctional Fe5C2Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomography-Guided Photothermal Therapy (Adv.) Tj ETQq0 0 ()rg2BiIo∮Ov	erloock 10 Tf 5
27	Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6]·4H2O@GO Particles: A Novel Chemical Approach. Scientific Reports, 2013, 3, 3542.	3.3	59
28	Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. Rare Metals, 2013, 32, 105-112.	7.1	33
29	Fe ₅ C ₂ Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 15814-15821.	13.7	529
30	Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications, 2011, 47, 5130.	4.1	269